华为云用户手册

  • 问题分析 在开启并行回放或串行回放的情况下(查询GUC参数recovery_parse_workers和recovery_max_workers均是1为串行回放;recovery_parse_workers是1,recovery_max_workers大于1为并行回放),备机的查询线程在做索引扫描时,会先对索引页面加读锁,每当扫到一个元组时会去判可见性,如果该元组对应的事务处于committing状态,需要等待该事务提交后再判断。而备机上的事务提交是依赖日志回放线程推进的,这个过程中会对索引页面进行修改,因此需要加锁。查询线程在等待过程中会释放索引页面的锁,否则会出现查询线程等待回放线程进行事务提交,而回放线程在等待查询线程释放锁。 该报错仅出现在查询与回放都需要访问同一个索引页面的场景下,查询线程在释放锁并等待事务结束过程中,访问的页面出现被修改的情况。 备机查询在扫到committing状态的元组时,需要等待事务提交是因为事务提交的顺序与产生日志的顺序可能是乱序的,例如主机上tx_1的事务比tx_2先提交,而备机上tx_1的commit日志在tx_2的commit日志之后回放,按照事务提交顺序来看tx_1对tx_2应当是可见的,所以需要等待事务提交。 备机查询在扫描索引页面时,发现页面元组数量(包含死元组)发生变化后不可重试,是因为在扫描时可能为正向或反向扫描,而举例来说页面发生分裂后一部分元组移动到右页面,在反向扫描的情况下即使重试只能向左扫描读取,无法再保证结果的正确性,并且由于无法分辨发生分裂或者插入,所以不可重试。 图1 问题分析
  • 列表分区 列表分区(List Partition)能够通过在每个分区的描述中为分区键指定离散值列表来显式控制行如何映射到分区。列表分区的优势在于可以以枚举分区值方式对数据进行分区,可以对无序和不相关的数据集进行分组和组织。对于未定义在列表中的分区键值,可以使用默认分区(DEFAULT)来进行数据的保存,这样所有未映射到任何其他分区的行都不会生成错误。示例如下: gaussdb=# CREATE TABLE bmsql_order_line ( ol_w_id INTEGER NOT NULL, ol_d_id INTEGER NOT NULL, ol_o_id INTEGER NOT NULL, ol_number INTEGER NOT NULL, ol_i_id INTEGER NOT NULL, ol_delivery_d TIMESTAMP, ol_amount DECIMAL(6,2), ol_supply_w_id INTEGER, ol_quantity INTEGER, ol_dist_info CHAR(24) ) PARTITION BY LIST(ol_d_id) ( PARTITION p0 VALUES (1,4,7), PARTITION p1 VALUES (2,5,8), PARTITION p2 VALUES (3,6,9), PARTITION p3 VALUES (DEFAULT) ); --清理示例 gaussdb=# DROP TABLE bmsql_order_line; 上述例子和之前给出的哈希分区的例子类似,同样通过ol_d_id列进行分区,但是在List分区中直接通过对ol_d_id的可能取值范围进行限定,不在列表中的数据会进入p3分区(DEFAULT)。相比哈希分区,List列表分区对分区键的可控性更好,往往能够精准的将目标数据保存在预想的分区中,但是如果列表值较多时在分区定义时变得麻烦,该情况下推荐使用Hash哈希分区。List、Hash分区往往都是处理无序、不相关的数据集进行分组和组织。 列表分区的分区键最多支持16列。如果分区键定义为1列,子分区定义时List列表中的枚举值不允许为NULL值;如果分区键定义为多列,子分区定义时List列表中的枚举值允许有NULL值。 父主题: 分区策略
  • 场景描述 当对分区表进行全局排序时,通常SQL引擎的实现方式是先通过Partition Iterator + PartitionScan对分区表做全量扫描然后进行Sort排序操作,这样难以利用数据分区分治的算法思想进行全局排序,假如ORDER BY排序列包含本身就有序的索引,本身局部有序的前提条件则无法利用。针对这类问题,目前分区表支持了分区归并排序执行策略,利用MergeAppend的执行机制改进分区表的排序机制。
  • 注意事项及约束条件 当分区扫描路径为Index/Index Only时,才支持MergeAppend执行机制。 分区剪枝结果大于1时,才支持MergeAppend执行机制。 当分区索引全部有效且为btree索引时,才支持MergeAppend执行机制。 当SQL含有Limit子句时,才支持MergeAppend执行机制。 当分区扫描时如果存在Filter,不支持MergeAppend执行机制。 当GUC参数sql_beta_feature = 'disable_merge_append_partition'时,不再生成MergeAppend路径。
  • 通用数据库服务层 从技术角度来看,存储引擎需要一些基础架构组件,主要包括: 并发:不同存储引擎选择正确的锁可以减少开销,从而提高整体性能。此外提供多版本并发控制或“快照”读取等功能。 事务:均需满足ACID的要求,提供事务状态查询等功能。 内存缓存:不同存储引擎在访问索引和数据时一般会对其进行缓存。缓存池允许直接从内存中处理经常使用的数据,从而加快了处理速度。。 检查点:不同存储引擎一般都支持增量checkpoint/double write或全量checkpoint/full page write模式。应用可以根据不同条件进行选择增量或者全量,这个对存储引擎是透明的。 日志:GaussDB Kernel采用的是物理日志,其写入/传输/回放对存储引擎透明。 父主题: 存储引擎体系架构概述
  • 工具函数示例 pg_get_tabledef获取分区表的定义,入参可以为表的oid或者表名。 SELECT pg_get_tabledef('test_range_pt'); pg_get_tabledef -------------------------------------------------------------------- SET search_path = public; + CREATE TABLE test_range_pt ( + a integer, + b integer, + c integer + ) + WITH (orientation=row, compression=no) + PARTITION BY RANGE (a) + ( + PARTITION p1 VALUES LESS THAN (2000) TABLESPACE pg_default, + PARTITION p2 VALUES LESS THAN (3000) TABLESPACE pg_default, + PARTITION p3 VALUES LESS THAN (4000) TABLESPACE pg_default, + PARTITION p4 VALUES LESS THAN (5000) TABLESPACE pg_default, + PARTITION p5 VALUES LESS THAN (MAXVALUE) TABLESPACE pg_default+ ) + ENABLE ROW MOVEMENT; (1 row) pg_stat_get_partition_tuples_hot_updated返回给定分区id的分区热更新元组数的统计。 在分区p1中插入10条数据并更新,统计分区p1的热更新元组数。 INSERT INTO test_range_pt VALUES(generate_series(1,10),1,1); INSERT 0 10 SELECT pg_stat_get_partition_tuples_hot_updated(49294); pg_stat_get_partition_tuples_hot_updated ------------------------------------------ 0 (1 row) UPDATE test_range_pt SET b = 2; UPDATE 10 SELECT pg_stat_get_partition_tuples_hot_updated(49294); pg_stat_get_partition_tuples_hot_updated ------------------------------------------ 10 (1 row)
  • 前置建表相关信息 前置建表: CREATE TABLE test_range_pt (a INT, b INT, c INT) PARTITION BY RANGE (a) ( PARTITION p1 VALUES LESS THAN (2000), PARTITION p2 VALUES LESS THAN (3000), PARTITION p3 VALUES LESS THAN (4000), PARTITION p4 VALUES LESS THAN (5000), PARTITION p5 VALUES LESS THAN (MAXVALUE) )ENABLE ROW MOVEMENT; 查看分区表oid SELECT oid FROM pg_class WHERE relname = 'test_range_pt'; oid ------- 49290 (1 row) 查看分区信息 SELECT oid,relname,parttype,parentid,boundaries FROM pg_partition WHERE parentid = 49290; oid | relname | parttype | parentid | boundaries -------+---------------+----------+----------+------------ 49293 | test_range_pt | r | 49290 | 49294 | p1 | p | 49290 | {2000} 49295 | p2 | p | 49290 | {3000} 49296 | p3 | p | 49290 | {4000} 49297 | p4 | p | 49290 | {5000} 49298 | p5 | p | 49290 | {NULL} (6 rows) 创建索引 CREATE INDEX idx_range_a ON test_range_pt(a) LOCAL; CREATE INDEX --查看分区索引oid SELECT oid FROM pg_class WHERE relname = 'idx_range_a'; oid ------- 90250 (1 row) 查看索引分区信息 SELECT oid,relname,parttype,parentid,boundaries,indextblid FROM pg_partition WHERE parentid = 90250; oid | relname | parttype | parentid | boundaries | indextblid -------+----------+----------+----------+------------+------------ 90255 | p5_a_idx | x | 90250 | | 49298 90254 | p4_a_idx | x | 90250 | | 49297 90253 | p3_a_idx | x | 90250 | | 49296 90252 | p2_a_idx | x | 90250 | | 49295 90251 | p1_a_idx | x | 90250 | | 49294 (5 rows)
  • 对二级分区表删除二级分区 使用ALTER TABLE DROP SUBPARTITION可以删除二级分区表的一个二级分区,这个行为可以作用在二级分区策略为RANGE或者LIST的情况。 例如,通过指定分区名删除二级分区表range_list_sales的二级分区date_202005_channel1,并更新Global索引。 ALTER TABLE range_list_sales DROP SUBPARTITION date_202005_channel1 UPDATE GLOBAL INDEX; 或者,通过指定分区值来删除二级分区表range_list_sales中('2020-05-08', '0')所对应的二级分区。由于不带UPDATE GLOBAL INDEX子句,执行该命令后Global索引会失效。 ALTER TABLE range_list_sales DROP SUBPARTITION FOR ('2020-05-08', '0'); 当二级分区表所删除的目标分区只有一个二级分区时,不支持通过ALTER TABLE DROP SUBPARTITION命令删除二级分区。 当二级分区表的二级分区策略为HASH时,不支持通过ALTER TABLE DROP SUBPARTITION命令删除二级分区。 父主题: 删除分区
  • 对二级分区表合并二级分区 使用ALTER TABLE MERGE SUBPARTITIONS可以将多个二级分区合并为一个分区。 例如,将二级分区表hash_list_sales的分区product1_channel1、product1_channel2、product1_channel3合并为一个新的分区,并更新Global索引。 ALTER TABLE hash_list_sales MERGE SUBPARTITIONS product1_channel1, product1_channel2, product1_channel3 INTO SUBPARTITION product1_channel1 UPDATE GLOBAL INDEX; 父主题: 合并分区
  • 哈希分区 哈希分区(Hash Partition)基于对分区键使用哈希算法将数据映射到分区。使用的哈希算法为GaussDB Kernel内置哈希算法,在分区键取值范围不倾斜(no data skew)场景下,哈希算法在分区之间均匀分布行,使分区大小大致相同。因此哈希分区是实现分区间均匀分布数据的理想方法。哈希分区也是范围分区的一种易于使用的替代方法,尤其是当要分区的数据不是历史数据或没有明显的分区键时,示例如下: CREATE TABLE bmsql_order_line ( ol_w_id INTEGER NOT NULL, ol_d_id INTEGER NOT NULL, ol_o_id INTEGER NOT NULL, ol_number INTEGER NOT NULL, ol_i_id INTEGER NOT NULL, ol_delivery_d TIMESTAMP, ol_amount DECIMAL(6,2), ol_supply_w_id INTEGER, ol_quantity INTEGER, ol_dist_info CHAR(24) ) --预先定义100个分区 PARTITION BY HASH(ol_d_id) ( PARTITION p0, PARTITION p1, PARTITION p2, … PARTITION p99 ); 上述例子中,bmsql_order_line表的ol_d_id进行了分区,ol_d_id列是一个identifier性质的属性列,本身并不带有时间或者某一个特定维度上的区分。使用哈希分区策略来对其进行分表处理则是一个较为理想的选择,相比其他分区类型,除了预先确保分区键没有过多数据倾斜(某一、某几个值重复度高),只需要指定分区键和分区数即可创建分区,同时还能够确保每个分区的数据均匀,提升了分区表的易用性。 父主题: 分区策略
  • 范围分区 范围分区(Range Partition)根据为每个分区建立的分区键的值范围将数据映射到分区。范围分区是生产系统中最常见的分区类型,通常在以时间维度(Date、Time Stamp)描述数据场景中使用。范围分区有两种语法格式,示例如下: VALUES LESS THAN的语法格式 对于从句是VALUE LESS THAN的语法格式,范围分区策略的分区键最多支持16列。 单列分区键示例如下: gaussdb=# CREATE TABLE range_sales_single_key ( product_id INT4 NOT NULL, customer_id INT4 NOT NULL, time DATE, channel_id CHAR(1), type_id INT4, quantity_sold NUMERIC(3), amount_sold NUMERIC(10,2) ) PARTITION BY RANGE (time) ( PARTITION date_202001 VALUES LESS THAN ('2020-02-01'), PARTITION date_202002 VALUES LESS THAN ('2020-03-01'), PARTITION date_202003 VALUES LESS THAN ('2020-04-01'), PARTITION date_202004 VALUES LESS THAN ('2020-05-01') ); --清理示例 gaussdb=# DROP TABLE range_sales_single_key; 其中date_202002表示2020年2月的分区,将包含分区键值从2020年2月1日到2020年2月29日的数据。 每个分区都有一个VALUES LESS子句,用于指定分区的非包含上限。大于或等于该分区键的任何值都将添加到下一个分区。除第一个分区外,所有分区都具有由前一个分区的VALUES LESS子句指定的隐式下限。可以为最高分区定义MAXVALUE关键字,MAXVALUE表示一个虚拟无限值,其排序高于分区键的任何其他可能值,包括空值。 多列分区键示例如下: gaussdb=# CREATE TABLE range_sales ( c1 INT4 NOT NULL, c2 INT4 NOT NULL, c3 CHAR(1) ) PARTITION BY RANGE (c1,c2) ( PARTITION p1 VALUES LESS THAN (10,10), PARTITION p2 VALUES LESS THAN (10,20), PARTITION p3 VALUES LESS THAN (20,10) ); gaussdb=# INSERT INTO range_sales VALUES(9,5,'a'); gaussdb=# INSERT INTO range_sales VALUES(9,20,'a'); gaussdb=# INSERT INTO range_sales VALUES(9,21,'a'); gaussdb=# INSERT INTO range_sales VALUES(10,5,'a'); gaussdb=# INSERT INTO range_sales VALUES(10,15,'a'); gaussdb=# INSERT INTO range_sales VALUES(10,20,'a'); gaussdb=# INSERT INTO range_sales VALUES(10,21,'a'); gaussdb=# INSERT INTO range_sales VALUES(11,5,'a'); gaussdb=# INSERT INTO range_sales VALUES(11,20,'a'); gaussdb=# INSERT INTO range_sales VALUES(11,21,'a'); gaussdb=# SELECT * FROM range_sales PARTITION (p1); c1 | c2 | c3 ----+----+---- 9 | 5 | a 9 | 20 | a 9 | 21 | a 10 | 5 | a (4 rows) gaussdb=# SELECT * FROM range_sales PARTITION (p2); c1 | c2 | c3 ----+----+---- 10 | 15 | a (1 row) gaussdb=# SELECT * FROM range_sales PARTITION (p3); c1 | c2 | c3 ----+----+---- 10 | 20 | a 10 | 21 | a 11 | 5 | a 11 | 20 | a 11 | 21 | a (5 rows) --清理示例 gaussdb=# DROP TABLE range_sales; 多列分区的分区规则如下: 从第一列开始比较。 如果插入的值当前列小于分区当前列边界值,则直接插入。 如果插入的当前列等于分区当前列的边界值,则比较插入值的下一列与分区下一列边界值的大小。 如果插入的当前列大于分区当前列的边界值,则换下一个分区进行比较。 START END语法格式 对于从句是START END语法格式,范围分区策略的分区键最多支持1列。 示例如下: -- 创建表空间 gaussdb=# CREATE TABLESPACE startend_tbs1 LOCATION '/home/omm/startend_tbs1'; gaussdb=# CREATE TABLESPACE startend_tbs2 LOCATION '/home/omm/startend_tbs2'; gaussdb=# CREATE TABLESPACE startend_tbs3 LOCATION '/home/omm/startend_tbs3'; gaussdb=# CREATE TABLESPACE startend_tbs4 LOCATION '/home/omm/startend_tbs4'; -- 创建临时schema gaussdb=# CREATE SCHEMA tpcds; gaussdb=# SET CURRENT_SCHEMA TO tpcds; -- 创建分区表,分区键是integer类型 gaussdb=# CREATE TABLE tpcds.startend_pt (c1 INT, c2 INT) TABLESPACE startend_tbs1 PARTITION BY RANGE (c2) ( PARTITION p1 START(1) END(1000) EVERY(200) TABLESPACE startend_tbs2, PARTITION p2 END(2000), PARTITION p3 START(2000) END(2500) TABLESPACE startend_tbs3, PARTITION p4 START(2500), PARTITION p5 START(3000) END(5000) EVERY(1000) TABLESPACE startend_tbs4 ) ENABLE ROW MOVEMENT; -- 查看分区表信息 gaussdb=# SELECT relname, boundaries, spcname FROM pg_partition p JOIN pg_tablespace t ON p.reltablespace=t.oid and p.parentid='tpcds.startend_pt'::regclass ORDER BY 1; relname | boundaries | spcname -------------+------------+--------------- p1_0 | {1} | startend_tbs2 p1_1 | {201} | startend_tbs2 p1_2 | {401} | startend_tbs2 p1_3 | {601} | startend_tbs2 p1_4 | {801} | startend_tbs2 p1_5 | {1000} | startend_tbs2 p2 | {2000} | startend_tbs1 p3 | {2500} | startend_tbs3 p4 | {3000} | startend_tbs1 p5_1 | {4000} | startend_tbs4 p5_2 | {5000} | startend_tbs4 startend_pt | | startend_tbs1 (12 rows) --清理示例 gaussdb=# DROP TABLE tpcds.startend_pt; 父主题: 分区策略
  • 对一级分区表交换分区 使用ALTER TABLE EXCHANGE PARTITION可以对一级分区表交换分区。 例如,通过指定分区名将范围分区表range_sales的分区date_202001和普通表exchange_sales进行交换,不进行分区键校验,并更新Global索引。 ALTER TABLE range_sales EXCHANGE PARTITION (date_202001) WITH TABLE exchange_sales WITHOUT VALIDATION UPDATE GLOBAL INDEX; 或者,通过指定分区值将范围分区表range_sales中'2020-01-08'所对应的分区和普通表exchange_sales进行交换,进行分区校验并将不满足目标分区约束的数据插入到分区表的其他分区中。由于不带UPDATE GLOBAL INDEX子句,执行该命令后Global索引会失效。 ALTER TABLE range_sales EXCHANGE PARTITION FOR ('2020-01-08') WITH TABLE exchange_sales WITH VALIDATION VERBOSE; 父主题: 交换分区
  • 注意事项及约束条件 GUC参数partition_iterator_elimination开启后,且优化器剪枝结果只有一个分区时,目标场景优化才能生效。 消除Partition Iterator算子不支持二级分区表。 支持cplan,支持部分gplan场景,如分区键a = $1(即优化器阶段可以剪枝到一个分区的场景)。 支持SeqScan、Indexscan、Indexonlyscan、Bitmapscan、RowToVec、Tidscan算子。 支持行存,astore/ustore存储引擎,支持SQLBypass。 Partition Iterator算子下层算子是支持的Scan算子时,才支持消除。
  • 场景描述 在当前分区表架构中,执行器通过Partition Iterator算子去迭代访问每一个分区。当分区剪枝结果只有一个分区时,Partition Iterator算子已经失去了迭代器的作用,在此情况下消除Partition Iterator算子,可以避免执行时一些不必要的开销。由于执行器的PIPELINE架构,Partition Iterator算子会重复执行,在数据量较大的场景下消除Partition Iterator算子的收益十分可观。
  • 外部密钥服务的身份验证 当数据库驱动访问华为云密钥管理服务时,为避免攻击者伪装为密钥服务,在数据库驱动与密钥服务建立https连接的过程中,可通过CA证书验证密钥服务器的合法性。为此,需提前配置CA证书,如果未配置,将不会验证密钥服务的身份。配置方法如下: 华为云场景下,需在环境变量中增加如下参数: export HUAWEI_KMS_INFO='其他参数, iamCaCert=路径/IAM的CA证书文件, kmsCaCert=路径/KMS的CA证书文件' 大部分浏览器均会自动下载网站对应的CA证书,并提供证书导出功能。虽然,诸如https://www.ssleye.com/ssltool/certs_down.html等很多网站也提供自动下载CA证书的功能,但可能因本地环境中存在代理或网关,导致CA证书无法正常使用。所以,建议借助浏览器下载CA证书。下载方式如下: 由于我们使用restful接口访问密钥服务,当我们在浏览器输入接口对应的url时,可忽略下述2中的失败页面,因为即使在失败的情况下,浏览器早已提前自动下载CA证书。 输入域名:打开浏览器,在华为云场景中,分别输入IAM服务的域名:iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens与KMS的域名:kms.cn-north-4.myhuaweicloud.com/v1.0。 查找证书:在每次输入域名后,找到SSL连接相关信息,单击后会发现证书,继续单击可查看证书内容。 导出证书:在证书查看页面,可能会看到证书分为很多级,我们仅需要域名的上一级证书即可,选择该证书并单击导出,便可直接生成证书文件,即我们需要的证书文件。 上传证书:将导出的证书上传至应用端,并配置到上述参数中即可。
  • 安全地设置环境变量 环境变量HUAWEI_KMS_INFO中包含敏感信息,建议使用如下设置方式: 设置临时环境变量:使用密态数据库时,通过export命令设置环境变量;使用完,即通过unset命令清理环境变量。该方法中操作系统日志可能会记录敏感信息,建议使用进程级环境变量或使用JDBC接口对connection连接参数进行设置。 设置进程级环境变量:在应用程序代码中,通过编程接口设置环境变量,不同编程语言设置示例如下: C/C++:setenv(name, value)。 Go:os.Setenv(name, value)。 java暂不支持设置进程级环境变量,仅支持通过JDBC接口设置connection连接参数。
  • 交换分区 用户可以使用交换分区的命令来将分区与普通表的数据进行交换。交换分区可以快速将数据导入/导出分区表,实现数据高效加载的目的。在业务迁移的场景,使用交换分区比常规导入会快很多。交换分区可以通过指定分区名或者分区值来进行。 执行交换分区命令会使得Global索引失效,可以通过UPDATE GLOBAL INDEX子句来同步更新Global索引,或者用户自行重建Global索引。 执行交换分区时,可以申明WITH/WITHOUT VALIDATION,表明是否校验普通表数据满足目标分区的分区键约束规则(默认校验)。数据校验活动开销较大,如果能确保交换的数据属于目标分区,可以申明WITHOUT VALIDATION来提高交换性能。 可以申明WITH VALIDATION VERBOSE,此时数据库会校验普通表的每一行,将不满足目标分区的分区键约束规则的数据,插入到分区表的其他分区中,最后再进行普通表与目标分区的交换。 例如,给出如下分区定义和普通表exchange_sales的数据分布,并将分区DATE_202001和普通表exchange_sales做交换,则根据申明子句的不同,存在以下三种行为: 申明WITHOUT VALIDATION,数据全部交换到分区DATE_202001中,由于'2020-02-03', '2020-04-08'不满足分区DATE_202001的范围约束,后续业务可能会出现异常。 申明WITH VALIDATION,由于'2020-02-03', '2020-04-08'不满足分区DATE_202001的范围约束,数据库给出相应的报错。 申明WITH VALIDATION VERBOSE,数据库会将'2020-02-03'插入分区DATE_202002,将'2020-04-08'插入分区DATE_202004,再将剩下的数据交换到分区DATE_202001中。 --分区定义 PARTITION DATE_202001 VALUES LESS THAN ('2020-02-01'), PARTITION DATE_202002 VALUES LESS THAN ('2020-03-01'), PARTITION DATE_202003 VALUES LESS THAN ('2020-04-01'), PARTITION DATE_202004 VALUES LESS THAN ('2020-05-01') -- exchange_sales的数据分布 ('2020-01-15', '2020-01-17', '2020-01-23', '2020-02-03', '2020-04-08') 如果交换的数据不完全属于目标分区,请不要申明WITHOUT VALIDATION交换分区,否则会破坏分区约束规则,导致分区表后续DML业务结果异常。 进行交换的普通表和分区必须满足如下条件: 普通表和分区的列数目相同,对应列的信息严格一致。 普通表和分区的表压缩信息严格一致。 普通表索引和分区Local索引个数相同,且对应索引的信息严格一致。 普通表和分区的表约束个数相同,且对应表约束的信息严格一致。 普通表不可以是临时表。 普通表和分区表上不可以有动态数据脱敏,行访问控制约束。 对一级分区表交换分区 对二级分区表交换二级分区 父主题: 分区表运维管理
  • 对二级分区表删除一级分区 使用ALTER TABLE DROP PARTITION可以删除二级分区表的一个一级分区,这个行为可以作用在一级分区策略为RANGE或者LIST的情况。数据库会将这个一级分区,以及一级分区下的所有二级分区都删除。 例如,通过指定分区名删除二级分区表range_list_sales的一级分区date_202005,并更新Global索引。 ALTER TABLE range_list_sales DROP PARTITION date_202005 UPDATE GLOBAL INDEX; 或者,通过指定分区值来删除二级分区表range_list_sales中('2020-05-08')所对应的一级分区。由于不带UPDATE GLOBAL INDEX子句,执行该命令后Global索引会失效。 ALTER TABLE range_list_sales DROP PARTITION FOR ('2020-05-08'); 当二级分区表只有一个一级分区时,不支持通过ALTER TABLE DROP PARTITION命令删除一级分区。 当二级分区表的一级分区策略为HASH时,不支持通过ALTER TABLE DROP PARTITION命令删除一级分区。 父主题: 删除分区
  • 性能 在Benchmarksql-5.0的100warehouse场景下,采用pg_logical_slot_get_changes时: 单次解码数据量4K行(对应约5MB~10MB日志),解码性能0.3MB/s~0.5 MB/s。 单次解码数据量32K行(对应约40MB~80MB日志),解码性能3MB/s~5MB/s。 单次解码数据量256K行(对应约320MB~640MB日志),解码性能3MB/s~5MB/s。 单次解码数据量再增大,解码性能无明显提升。 如果采用pg_logical_slot_peek_changes + pg_replication_slot_advance方式,解码性能相比采用pg_logical_slot_get_changes时要下降30%~50%。
  • 分区(分区子表、子分区) 分区表中实际保存数据的表,对应的entry通常保存在pg_partition中,各个子分区的parentid作为外键关联其分区母表在pg_class表中的oid列。 示例1:t1_hash为一个分区表: gaussdb=# CREATE TABLE t1_hash (c1 INT, c2 INT, c3 INT) PARTITION BY HASH(c1) ( PARTITION p0, PARTITION p1, PARTITION p2, PARTITION p3, PARTITION p4, PARTITION p5, PARTITION p6, PARTITION p7, PARTITION p8, PARTITION p9 ); --查询t1_hash分区类型 gaussdb=# SELECT oid, relname, parttype FROM pg_class WHERE relname = 't1_hash'; oid | relname | parttype -------+---------+---------- 16685 | t1_hash | p (1 row) --查询t1_hash的分区信息 gaussdb=# SELECT oid, relname, parttype, parentid FROM pg_partition WHERE parentid = 16685; oid | relname | parttype | parentid -------+---------+----------+---------- 16688 | t1_hash | r | 16685 16689 | p0 | p | 16685 16690 | p1 | p | 16685 16691 | p2 | p | 16685 16692 | p3 | p | 16685 16693 | p4 | p | 16685 16694 | p5 | p | 16685 16695 | p6 | p | 16685 16696 | p7 | p | 16685 16697 | p8 | p | 16685 16698 | p9 | p | 16685 (11 rows) --删除t1_hash gaussdb=# DROP TABLE t1_hash; 父主题: 基本概念
  • 范围分区 范围分区(Range Partition)根据为每个分区建立的分区键的值范围将数据映射到分区。范围分区是生产系统中最常见的分区类型,通常在以时间维度(Date、Time Stamp)描述数据场景中使用。范围分区有两种语法格式,示例如下: VALUES LESS THAN的语法格式 对于从句是VALUE LESS THAN的语法格式,范围分区策略的分区键最多支持16列。 单列分区键示例如下: gaussdb=# CREATE TABLE range_sales ( product_id INT4 NOT NULL, customer_id INT4 NOT NULL, time DATE, channel_id CHAR(1), type_id INT4, quantity_sold NUMERIC(3), amount_sold NUMERIC(10,2) ) PARTITION BY RANGE (time) ( PARTITION date_202001 VALUES LESS THAN ('2020-02-01'), PARTITION date_202002 VALUES LESS THAN ('2020-03-01'), PARTITION date_202003 VALUES LESS THAN ('2020-04-01'), PARTITION date_202004 VALUES LESS THAN ('2020-05-01') ); --清理示例 gaussdb=# DROP TABLE range_sales; 其中date_202002表示2020年2月的分区,将包含分区键值从2020年2月1日到2020年2月29日的数据。 每个分区都有一个VALUES LESS子句,用于指定分区的非包含上限。大于或等于该分区键的任何值都将添加到下一个分区。除第一个分区外,所有分区都具有由前一个分区的VALUES LESS子句指定的隐式下限。可以为最高分区定义MAXVALUE关键字,MAXVALUE表示一个虚拟无限值,其排序高于分区键的任何其他可能值,包括空值。 多列分区键示例如下: gaussdb=# CREATE TABLE range_sales_with_multiple_keys ( c1 INT4 NOT NULL, c2 INT4 NOT NULL, c3 CHAR(1) ) PARTITION BY RANGE (c1,c2) ( PARTITION p1 VALUES LESS THAN (10,10), PARTITION p2 VALUES LESS THAN (10,20), PARTITION p3 VALUES LESS THAN (20,10) ); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(9,5,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(9,20,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(9,21,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,5,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,15,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,20,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,21,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(11,5,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(11,20,'a'); gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(11,21,'a'); gaussdb=# SELECT * FROM range_sales_with_multiple_keys PARTITION (p1); c1 | c2 | c3 ----+----+---- 9 | 5 | a 9 | 20 | a 9 | 21 | a 10 | 5 | a (4 rows) gaussdb=# SELECT * FROM range_sales_with_multiple_keys PARTITION (p2); c1 | c2 | c3 ----+----+---- 10 | 15 | a (1 row) gaussdb=# SELECT * FROM range_sales_with_multiple_keys PARTITION (p3); c1 | c2 | c3 ----+----+---- 10 | 20 | a 10 | 21 | a 11 | 5 | a 11 | 20 | a 11 | 21 | a (5 rows) --清理示例 gaussdb=# DROP TABLE range_sales_with_multiple_keys; 多列分区的分区规则如下: 从第一列开始比较。 如果插入的值当前列小于分区当前列边界值,则直接插入。 如果插入的当前列等于分区当前列的边界值,则比较插入值的下一列与分区下一列边界值的大小。 如果插入的当前列大于分区当前列的边界值,则换下一个分区进行比较。 START END语法格式 对于从句是START END语法格式,范围分区策略的分区键最多支持1列。 示例如下: -- 创建表空间 gaussdb=# CREATE TABLESPACE startend_tbs1 LOCATION '/home/omm/startend_tbs1'; gaussdb=# CREATE TABLESPACE startend_tbs2 LOCATION '/home/omm/startend_tbs2'; gaussdb=# CREATE TABLESPACE startend_tbs3 LOCATION '/home/omm/startend_tbs3'; gaussdb=# CREATE TABLESPACE startend_tbs4 LOCATION '/home/omm/startend_tbs4'; -- 创建临时schema gaussdb=# CREATE SCHEMA tpcds; gaussdb=# SET CURRENT_SCHEMA TO tpcds; -- 创建分区表,分区键是integer类型 gaussdb=# CREATE TABLE tpcds.startend_pt (c1 INT, c2 INT) TABLESPACE startend_tbs1 PARTITION BY RANGE (c2) ( PARTITION p1 START(1) END(1000) EVERY(200) TABLESPACE startend_tbs2, PARTITION p2 END(2000), PARTITION p3 START(2000) END(2500) TABLESPACE startend_tbs3, PARTITION p4 START(2500), PARTITION p5 START(3000) END(5000) EVERY(1000) TABLESPACE startend_tbs4 ) ENABLE ROW MOVEMENT; -- 查看分区表信息 gaussdb=# SELECT relname, boundaries, spcname FROM pg_partition p JOIN pg_tablespace t ON p.reltablespace=t.oid and p.parentid='tpcds.startend_pt'::regclass ORDER BY 1; relname | boundaries | spcname -------------+------------+--------------- p1_0 | {1} | startend_tbs2 p1_1 | {201} | startend_tbs2 p1_2 | {401} | startend_tbs2 p1_3 | {601} | startend_tbs2 p1_4 | {801} | startend_tbs2 p1_5 | {1000} | startend_tbs2 p2 | {2000} | startend_tbs1 p3 | {2500} | startend_tbs3 p4 | {3000} | startend_tbs1 p5_1 | {4000} | startend_tbs4 p5_2 | {5000} | startend_tbs4 startend_pt | | startend_tbs1 (12 rows) 父主题: 分区策略
  • 分区表对导入操作的性能影响 在GaussDB内核实现中,分区表数据的插入的处理过程相比非分区表增加分区路由部分的开销,因从整体上分区表场景的数据插入开销主要看成:(1)heap-insert基表插入、(2)partition-routing分区路由两个部分,其中heap基表插入解决tuple入库对应heap表的问题并且该部分普通表和分区表共用,而分区路由部分解决分区路由即tuple元组插入到对应partRel的问题。 因此对数据插入优化的侧重点如下: 分区表基表Heap表插入: 算子底噪优化 heap数据插入 索引插入build优化(带索引) 分区表分区路由: 路由查找算法逻辑优化 路由底噪优化,包括分区表partRel句柄开启、新增的函数调用逻辑开销 分区路由的性能主要通过大数据量的单条INSERT语句体现,UPDATE场景内部包含了查找对应要更新的元组进行DELETE操作然后再进行INSERT,因此不如单条INSERT语句场景直接。 不同分区类型的路由算法逻辑如表1所示: 表1 路由算法逻辑 分区方式 路由算法复杂度 实现概述说明 范围分区(Range Partition) O(logN) 基于二分binary-search实现 间隔分区(Interval Partition) O(logN) 基于二分binary-search实现 哈希分区(Hash-Partition) O(1) 基于key-partOid哈希表实现 列表分区(List-Partition) O(1) 基于key-partOid哈希表实现 分区路由的主要处理逻辑根据导入数据元组的分区键计算其所在分区的过程,相比非分区表这部分为额外增加的开销,这部分开销在最终数据导入上的具体性能损失和服务器CPU处理能力、表宽度、磁盘/内存的实际容量相关,通常可以粗略认为: x86服务器场景下分区表相比普通表的导入性能会略低10%以内。 ARM服务器场景下为20%,造成x86和ARM指向性能略微差异的主要原因是分区路由为in-memory计算强化场景,主流x86体系CPU在单核指令处理能力上略优于arm。 父主题: 分区策略
  • 分区表DML查询语句 由于分区的实现完全体现在数据库内核中,用户对分区表查询、非分区表查询在语法上除了指定分区的查询操作以外没有区别。 出于分区表的易用性考虑,GaussDB支持指定分区的查询操作,指定分区可以通过PARTITION (partname)或者PARTITION FOR (partvalue)来进行。指定分区DML支持以下几类语法: 查询(SELECT) 插入(INSERT) 更新(UPDATE) 删除(DELETE) 插入或更新(UPSERT) 合并(MERGE INTO) 下面给出了指定分区做DML的示例: /* 创建分区表 list_02 */ gaussdb=# CREATE TABLE IF NOT EXISTS list_02 ( id INT, role VARCHAR(100), data VARCHAR(100) ) PARTITION BY LIST (id) ( PARTITION p_list_2 VALUES(0,1,2,3,4,5,6,7,8,9), PARTITION p_list_3 VALUES(10,11,12,13,14,15,16,17,18,19), PARTITION p_list_4 VALUES( DEFAULT ), PARTITION p_list_5 VALUES(20,21,22,23,24,25,26,27,28,29), PARTITION p_list_6 VALUES(30,31,32,33,34,35,36,37,38,39), PARTITION p_list_7 VALUES(40,41,42,43,44,45,46,47,48,49) ) ENABLE ROW MOVEMENT; /* 导入数据 */ INSERT INTO list_02 VALUES(null, 'alice', 'alice data'); INSERT INTO list_02 VALUES(2, null, 'bob data'); INSERT INTO list_02 VALUES(null, null, 'peter data'); /* 对指定分区进行查询 */ -- 查询分区表全部数据 gaussdb=# SELECT * FROM list_02 ORDER BY data; id | role | data ----+-------+------------ | alice | alice data 2 | | bob data | | peter data (3 rows) -- 查询分区p_list_2数据 gaussdb=# SELECT * FROM list_02 PARTITION (p_list_2) ORDER BY data; id | role | data ----+------+---------- 2 | | bob data (1 row) -- 查询(100)所对应的分区的数据,即分区p_list_4 gaussdb=# SELECT * FROM list_02 PARTITION FOR (100) ORDER BY data; id | role | data ----+-------+------------ | alice | alice data | | peter data (2 rows) /* 对指定分区做IUD */ -- 删除分区p_list_5中的全部数据 gaussdb=# DELETE FROM list_02 PARTITION (p_list_5); -- 指定分区p_list_7插入数据,由于数据不符合该分区约束,插入报错 gaussdb=# INSERT INTO list_02 PARTITION (p_list_7) VALUES(null, 'cherry', 'cherry data'); ERROR: inserted partition key does not map to the table partition -- 将分区值100所属分区,即分区p_list_4的数据进行更新 gaussdb=# UPDATE list_02 PARTITION FOR (100) SET data = ''; --UPSERT。 gaussdb=# INSERT INTO list_02 (id, role, data) VALUES (1, 'test', 'testdata') ON DUPLICATE KEY UPDATE role = VALUES(role), data = VALUES(data); --MERGE INTO。 gaussdb=# CREATE TABLE IF NOT EXISTS list_tmp ( id INT, role VARCHAR(100), data VARCHAR(100) ) PARTITION BY LIST (id) ( PARTITION p_list_2 VALUES(0,1,2,3,4,5,6,7,8,9), PARTITION p_list_3 VALUES(10,11,12,13,14,15,16,17,18,19), PARTITION p_list_4 VALUES( DEFAULT ), PARTITION p_list_5 VALUES(20,21,22,23,24,25,26,27,28,29), PARTITION p_list_6 VALUES(30,31,32,33,34,35,36,37,38,39), PARTITION p_list_7 VALUES(40,41,42,43,44,45,46,47,48,49)) ENABLE ROW MOVEMENT; gaussdb=# MERGE INTO list_tmp target USING list_02 source ON (target.id = source.id) WHEN MATCHED THEN UPDATE SET target.data = source.data, target.role = source.role WHEN NOT MATCHED THEN INSERT (id, role, data) VALUES (source.id, source.role, source.data); --删除表。 gaussdb=# DROP TABLE list_02; DROP TABLE list_tmp; 父主题: 分区基本使用
  • 移动分区 用户可以使用移动分区的命令来将一个分区移动到新的表空间中。移动分区可以通过指定分区名或者分区值来进行。 使用ALTER TABLE MOVE PARTITION可以对分区表移动分区。 例如,通过指定分区名将范围分区表range_sales的分区date_202001移动到表空间tb1中。 ALTER TABLE range_sales MOVE PARTITION date_202001 TABLESPACE tb1; 或者,通过指定分区值将列表分区表list_sales中'0'所对应的分区移动到表空间tb1中。 ALTER TABLE list_sales MOVE PARTITION FOR ('0') TABLESPACE tb1; 父主题: 分区表运维管理
  • 交换分区 用户可以使用交换分区的命令来将分区与普通表的数据进行交换。交换分区可以快速将数据导入/导出分区表,实现数据高效加载的目的。在业务迁移的场景,使用交换分区比常规导入会快很多。交换分区可以通过指定分区名或者分区值来进行。 执行交换分区命令会使得Global索引失效,可以通过UPDATE GLOBAL INDEX子句来同步更新Global索引,或者用户自行重建Global索引。 执行交换分区时,可以申明WITH/WITHOUT VALIDATION,表明是否校验普通表数据满足目标分区的分区键约束规则(默认校验)。数据校验活动开销较大,如果能确保交换的数据属于目标分区,可以申明WITHOUT VALIDATION来提高交换性能。 可以申明WITH VALIDATION VERBOSE,此时数据库会校验普通表的每一行,将不满足目标分区的分区键约束规则的数据,插入到分区表的其他分区中,最后再进行普通表与目标分区的交换。 例如,给出如下分区定义和普通表exchange_sales的数据分布,并将分区DATE_202001和普通表exchange_sales做交换,则根据申明子句的不同,存在以下三种行为: 申明WITHOUT VALIDATION,数据全部交换到分区DATE_202001中,由于'2020-02-03', '2020-04-08'不满足分区DATE_202001的范围约束,后续业务可能会出现异常。 申明WITH VALIDATION,由于'2020-02-03', '2020-04-08'不满足分区DATE_202001的范围约束,数据库给出相应的报错。 申明WITH VALIDATION VERBOSE,数据库会将'2020-02-03'插入分区DATE_202002,将'2020-04-08'插入分区DATE_202004,再将剩下的数据交换到分区DATE_202001中。 --分区定义 PARTITION DATE_202001 VALUES LESS THAN ('2020-02-01'), PARTITION DATE_202002 VALUES LESS THAN ('2020-03-01'), PARTITION DATE_202003 VALUES LESS THAN ('2020-04-01'), PARTITION DATE_202004 VALUES LESS THAN ('2020-05-01') -- exchange_sales的数据分布 ('2020-01-15', '2020-01-17', '2020-01-23', '2020-02-03', '2020-04-08') 如果交换的数据不完全属于目标分区,请不要申明WITHOUT VALIDATION交换分区,否则会破坏分区约束规则,导致分区表后续DML业务结果异常。 进行交换的普通表和分区必须满足如下条件: 普通表和分区的列数目相同,对应列的信息严格一致。 普通表和分区的表压缩信息严格一致。 普通表索引和分区Local索引个数相同,且对应索引的信息严格一致。 普通表和分区的表约束个数相同,且对应表约束的信息严格一致。 普通表不可以是临时表。 普通表和分区表上不可以有动态数据脱敏,行访问控制约束。 使用ALTER TABLE EXCHANGE PARTITION可以对分区表交换分区。 例如,通过指定分区名将范围分区表range_sales的分区date_202001和普通表exchange_sales进行交换,不进行分区键校验,并更新Global索引。 ALTER TABLE range_sales EXCHANGE PARTITION (date_202001) WITH TABLE exchange_sales WITHOUT VALIDATION UPDATE GLOBAL INDEX; 或者,通过指定分区值将范围分区表range_sales中'2020-01-08'所对应的分区和普通表exchange_sales进行交换,进行分区校验并将不满足目标分区约束的数据插入到分区表的其他分区中。由于不带UPDATE GLOBAL INDEX子句,执行该命令后Global索引会失效。 ALTER TABLE range_sales EXCHANGE PARTITION FOR ('2020-01-08') WITH TABLE exchange_sales WITH VALIDATION VERBOSE; 父主题: 分区表运维管理
  • 对范围分区表分割分区 使用ALTER TABLE SPLIT PARTITION可以对范围分区表分割分区。 例如,假设范围分区表range_sales的分区date_202001定义范围为['2020-01-01', '2020-02-01')。可以指定分割点'2020-01-16'将分区date_202001分割为两个分区,并更新Global索引。 ALTER TABLE range_sales SPLIT PARTITION date_202001 AT ('2020-01-16') INTO ( PARTITION date_202001_p1, --第一个分区上界是'2020-01-16' PARTITION date_202001_p2 --第二个分区上界是'2020-02-01' ) UPDATE GLOBAL INDEX; 或者,不指定分割点,将分区date_202001分割为多个分区,并更新Global索引。 ALTER TABLE range_sales SPLIT PARTITION date_202001 INTO ( PARTITION date_202001_p1 VALUES LESS THAN ('2020-01-11'), PARTITION date_202001_p2 VALUES LESS THAN ('2020-01-21'), PARTITION date_202001_p3 --第三个分区上界是'2020-02-01' )UPDATE GLOBAL INDEX; 又或者,通过指定分区值而不是指定分区名来分割分区。 ALTER TABLE range_sales SPLIT PARTITION FOR ('2020-01-15') AT ('2020-01-16') INTO ( PARTITION date_202001_p1, --第一个分区上界是'2020-01-16' PARTITION date_202001_p2 --第二个分区上界是'2020-02-01' ) UPDATE GLOBAL INDEX; 若对MAXVALUE分区进行分割,前面几个分区不能申明MAXVALUE范围,最后一个分区会继承MAXVALUE分区范围。 父主题: 分割分区
  • 使用示例 gaussdb=# drop TABLE IF EXISTS "public".flashtest; NOTICE: table "flashtest" does not exist, skipping DROP TABLE --创建表 gaussdb=# CREATE TABLE "public".flashtest (col1 INT,col2 TEXT) with(storage_type=ustore); NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'col1' as the distribution column by default. HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column. CREATE TABLE --查询csn gaussdb=# select int8in(xidout(next_csn)) from gs_get_next_xid_csn(); int8in ---------- 79352065 79352065 79352065 79352065 79352065 79352065 (6 rows) --查询当前的时间戳 gaussdb=# select now(); now ------------------------------- 2023-09-13 19:46:34.102863+08 (1 row) --查看表flashtest gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+------ (0 rows) --插入数据 gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),(5,'INSERT5'),(6,'INSERT6'); INSERT 0 6 gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+--------- 3 | INSERT3 1 | INSERT1 2 | INSERT2 4 | INSERT4 5 | INSERT5 6 | INSERT6 (6 rows) --闪回表至特定csn gaussdb=# TIMECAPSULE TABLE flashtest TO CSN 79352065; TimeCapsule Table gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+------ (0 rows) gaussdb=# select now(); now ------------------------------- 2023-09-13 19:52:21.551028+08 (1 row) --插入数据 gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),(5,'INSERT5'),(6,'INSERT6'); INSERT 0 6 gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+--------- 3 | INSERT3 6 | INSERT6 1 | INSERT1 2 | INSERT2 4 | INSERT4 5 | INSERT5 (6 rows) --闪回表至特定的时间戳 gaussdb=# TIMECAPSULE TABLE flashtest TO TIMESTAMP to_timestamp ('2023-09-13 19:52:21.551028', 'YYYY-MM-DD HH24:MI:SS.FF'); TimeCapsule Table gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+------ (0 rows) gaussdb=# select now(); now ------------------------------- 2023-09-13 19:54:00.641506+08 (1 row) --插入数据 gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),(5,'INSERT5'),(6,'INSERT6'); INSERT 0 6 gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+--------- 3 | INSERT3 6 | INSERT6 1 | INSERT1 2 | INSERT2 4 | INSERT4 5 | INSERT5 (6 rows) --闪回表至特定的时间戳 gaussdb=# TIMECAPSULE TABLE flashtest TO TIMESTAMP '2023-09-13 19:54:00.641506'; TimeCapsule Table gaussdb=# SELECT * FROM flashtest; col1 | col2 ------+------ (0 rows) gaussdb=# drop TABLE IF EXISTS "public".flashtest; DROP TABLE
  • 向范围分区表新增分区 使用ALTER TABLE ADD PARTITION可以将分区添加到现有分区表的最后面,新增分区的上界值必须大于当前最后一个分区的上界值。 例如,对范围分区表range_sales新增一个分区。 ALTER TABLE range_sales ADD PARTITION date_202005 VALUES LESS THAN ('2020-06-01') TABLESPACE tb1; 当范围分区表有MAXVALUE分区时,无法新增分区。可以使用ALTER TABLE SPLIT PARTITION命令分割分区。分割分区同样适用于需要在现有分区表的前面/中间添加分区的情形,参考对范围分区表分割分区。 父主题: 新增分区
  • Local索引分区重建/不可用 使用ALTER INDEX PARTITION可以设置Local索引分区是否可用。 使用ALTER TABLE MODIFY PARTITION可以设置分区表上指定分区的所有索引分区是否可用。 例如,假设分区表range_sales上存在两张Local索引range_sales_idx1和range_sales_idx2,假设其在分区date_202001上对应的索引分区名分别为range_sales_idx1_part1和range_sales_idx2_part1。 下面给出了维护分区表分区索引的语法: 可以通过如下命令设置分区date_202001上的所有索引分区均不可用。 ALTER TABLE range_sales MODIFY PARTITION date_202001 UNUSABLE LOCAL INDEXES; 或者通过如下命令单独设置分区date_202001上的索引分区range_sales_idx1_part1不可用。 ALTER INDEX range_sales_idx1 MODIFY PARTITION range_sales_idx1_part1 UNUSABLE; 可以通过如下命令重建分区date_202001上的所有索引分区。 ALTER TABLE range_sales MODIFY PARTITION date_202001 REBUILD UNUSABLE LOCAL INDEXES; 或者通过如下命令单独重建分区date_202001上的索引分区range_sales_idx1_part1。 ALTER INDEX range_sales_idx1 REBUILD PARTITION range_sales_idx1_part1; 父主题: 分区表索引重建/不可用
  • 使用Ustore的优势 最新版本和历史版本分离存储,相比Astore扫描范围小。去除Astore的HOT chain,非索引列/索引列更新,Heap均可原位更新,ROWID可保持不变。历史版本可批量回收,对最新版本空间膨胀友好。 大并发更新同一行的场景,Ustore的原位更新机制保证了元组ROWID稳定,先到先得,更新时延相对稳定。 不依赖Vacuum进行旧版本清理。Index与Heap解耦,可独立清理,IO平稳度较好。 支持闪回功能。 不过,Ustore DML除修改数据页面,同时也需要修改Undo,更新操作开销会稍大一些。此外单条Tuple扫描开销由于需要复制(Astore返回指针)也会大一些。
共100000条