华为云用户手册

  • 更多优化示例 示例1:修改基表为replicate表,并且在过滤列上创建索引。 123 create table master_table (a int);create table sub_table(a int, b int);select a from master_table group by a having a in (select a from sub_table); 上述事例中存在一个相关性子查询,为了提升查询的性能,可以将sub_table修改为一个relication表,并且在字段a上创建一个index。
  • 参数说明 @queryblock 见指定Hint所处的查询块Queryblock章节,可省略,表示在当前查询块生效。 src, src1, src2表示predpush下推candidates一侧表集合。 dest表示predpush下推所指定的dest表也就是目标表。 predpush如果没有逗号表示所有表都是candidates表, 如果有逗号就说明同时指定了candidates表和dest表。 使用predpush hint将过滤表达式尽可能移至靠近数据源的位置以达到查询优化的目的。 使用predpush hint需要确保rewrite_rule GUC参数包含PREDPUSH|REDPUSHFORCE|PREDPUSHNORMAL选项。 subquery_block也可以是视图/物化视图。
  • 示例 创建示例表和索引 create table t1(c1 int, c2 int, c3 int);create table t2(c1 int, c2 int, c3 int);create table t3(c1 int, c2 int, c3 int);create index it1 on t1(c1,c2);create index it2 on t2(c1,c2);create index it3 on t1(c3,c2);-- 下面TPCH数据表需要插入10X数据量已匹配给出的计划示例create table store( s_store_sk integer not null, s_store_id char(16) not null, s_rec_start_date date , s_rec_end_date date , s_closed_date_sk integer , s_store_name varchar(50) , s_number_employees integer , s_floor_space integer , s_hours char(20) , s_manager varchar(40) , s_market_id integer , s_geography_class varchar(100) , s_market_desc varchar(100) , s_market_manager varchar(40) , s_division_id integer , s_division_name varchar(50) , s_company_id integer , s_company_name varchar(50) , s_street_number varchar(10) , s_street_name varchar(60) , s_street_type char(15) , s_suite_number char(10) , s_city varchar(60) , s_county varchar(30) , s_state char(2) , s_zip char(10) , s_country varchar(20) , s_gmt_offset decimal(5,2) , s_tax_precentage decimal(5,2) , primary key (s_store_sk)) with(orientation = column);create table store_sales( ss_sold_date_sk integer , ss_sold_time_sk integer , ss_item_sk integer not null, ss_customer_sk integer , ss_cdemo_sk integer , ss_hdemo_sk integer , ss_addr_sk integer , ss_store_sk integer , ss_promo_sk integer , ss_ticket_number integer not null, ss_quantity integer , ss_wholesale_cost decimal(7,2) , ss_list_price decimal(7,2) , ss_sales_price decimal(7,2) , ss_ext_discount_amt decimal(7,2) , ss_ext_sales_price decimal(7,2) , ss_ext_wholesale_cost decimal(7,2) , ss_ext_list_price decimal(7,2) , ss_ext_tax decimal(7,2) , ss_coupon_amt decimal(7,2) , ss_net_paid decimal(7,2) , ss_net_paid_inc_tax decimal(7,2) , ss_net_profit decimal(7,2) , primary key (ss_item_sk, ss_ticket_number)) with(orientation = column);create table store_returns( sr_returned_date_sk integer , sr_return_time_sk integer , sr_item_sk integer not null, sr_customer_sk integer , sr_cdemo_sk integer , sr_hdemo_sk integer , sr_addr_sk integer , sr_store_sk integer , sr_reason_sk integer , sr_ticket_number integer not null, sr_return_quantity integer , sr_return_amt decimal(7,2) , sr_return_tax decimal(7,2) , sr_return_amt_inc_tax decimal(7,2) , sr_fee decimal(7,2) , sr_return_ship_cost decimal(7,2) , sr_refunded_cash decimal(7,2) , sr_reversed_charge decimal(7,2) , sr_store_credit decimal(7,2) , sr_net_loss decimal(7,2) , primary key (sr_item_sk, sr_ticket_number)) with(orientation = column);create table customer( c_customer_sk integer not null, c_customer_id char(16) not null, c_current_cdemo_sk integer , c_current_hdemo_sk integer , c_current_addr_sk integer , c_first_shipto_date_sk integer , c_first_sales_date_sk integer , c_salutation char(10) , c_first_name char(20) , c_last_name char(30) , c_preferred_cust_flag char(1) , c_birth_day integer , c_birth_month integer , c_birth_year integer , c_birth_country varchar(20) , c_login char(13) , c_email_address char(50) , c_last_review_date char(10) , primary key (c_customer_sk)) with(orientation = column);create table promotion( p_promo_sk integer not null, p_promo_id char(16) not null, p_start_date_sk integer , p_end_date_sk integer , p_item_sk integer , p_cost decimal(15,2) , p_response_target integer , p_promo_name char(50) , p_channel_dmail char(1) , p_channel_email char(1) , p_channel_catalog char(1) , p_channel_tv char(1) , p_channel_radio char(1) , p_channel_press char(1) , p_channel_event char(1) , p_channel_demo char(1) , p_channel_details varchar(100) , p_purpose char(15) , p_discount_active char(1) , primary key (p_promo_sk)) with(orientation = column);create table customer_address( ca_address_sk integer not null, ca_address_id char(16) not null, ca_street_number char(10) , ca_street_name varchar(60) , ca_street_type char(15) , ca_suite_number char(10) , ca_city varchar(60) , ca_county varchar(30) , ca_state char(2) , ca_zip char(10) , ca_country varchar(20) , ca_gmt_offset decimal(5,2) , ca_location_type char(20) , primary key (ca_address_sk)) with(orientation = column);create table item( i_item_sk integer not null, i_item_id char(16) not null, i_rec_start_date date , i_rec_end_date date , i_item_desc varchar(200) , i_current_price decimal(7,2) , i_wholesale_cost decimal(7,2) , i_brand_id integer , i_brand char(50) , i_class_id integer , i_class char(50) , i_category_id integer , i_category char(50) , i_manufact_id integer , i_manufact char(50) , i_size char(20) , i_formulation char(20) , i_color char(20) , i_units char(10) , i_container char(10) , i_manager_id integer , i_product_name char(50) , primary key (i_item_sk)) with(orientation = column); 本章节大部分示例使用下述语句,便于Plan Hint支持的各方法作对比,示例语句及不带hint的原计划如下所示:
  • 建议 推荐使用两个表*的hint。对于两个表的采用*操作符的hint,只要两个表出现在join的两端,都会触发hint。例如:设置hint为rows(t1 t2 * 3),对于(t1 t3 t4)和(t2 t5 t6)join时,由于t1和t2出现在join的两端,所以其join的结果集也会应用该hint规则乘以3。 rows hint支持在单表、多表、function table及subquery scan table的结果集上指定hint。
  • 参数说明 join_table_list为表示表join顺序的hint字符串,可以包含当前层的任意个表(别名),或对于子查询提升的场景,也可以包含子查询的hint别名,同时任意表可以使用括号指定优先级,表之间使用空格分隔。 @queryblock 见指定Hint所处的查询块Queryblock章节,可省略,表示在当前查询块生效。 表只能用单个字符串表示,不能带schema。 表如果存在别名,需要优先使用别名来表示该表。
  • 存储层数据倾斜 GaussDB数据库中,数据分布存储在各个DN上,通过分布式执行提高查询的效率。但是,如果数据分布存在倾斜,则会导致分布式执行某些DN成为瓶颈,影响查询性能。这种情况通常是由于分布列选择不合理,可以通过调整分布列的方式解决。 例如下例: 1 2 3 4 5 6 7 8 91011121314151617181920 gaussdb=# explain performance select count(*) from inventory;5 --CStore Scan on lmz.inventory dn_6001_6002 (actual time=0.444..83.127 rows=42000000 loops=1) dn_6003_6004 (actual time=0.512..63.554 rows=27000000 loops=1) dn_6005_6006 (actual time=0.722..99.033 rows=45000000 loops=1) dn_6007_6008 (actual time=0.529..100.379 rows=51000000 loops=1) dn_6009_6010 (actual time=0.382..71.341 rows=36000000 loops=1) dn_6011_6012 (actual time=0.547..100.274 rows=51000000 loops=1) dn_6013_6014 (actual time=0.596..118.289 rows=60000000 loops=1) dn_6015_6016 (actual time=1.057..132.346 rows=63000000 loops=1) dn_6017_6018 (actual time=0.940..110.310 rows=54000000 loops=1) dn_6019_6020 (actual time=0.231..41.198 rows=21000000 loops=1) dn_6021_6022 (actual time=0.927..114.538 rows=54000000 loops=1) dn_6023_6024 (actual time=0.637..118.385 rows=60000000 loops=1) dn_6025_6026 (actual time=0.288..32.240 rows=15000000 loops=1) dn_6027_6028 (actual time=0.566..118.096 rows=60000000 loops=1) dn_6029_6030 (actual time=0.423..82.913 rows=42000000 loops=1) dn_6031_6032 (actual time=0.395..78.103 rows=39000000 loops=1) dn_6033_6034 (actual time=0.376..51.052 rows=24000000 loops=1) dn_6035_6036 (actual time=0.569..79.463 rows=39000000 loops=1) 在performance信息中,可以看到inventory表各DN的scan行数,发现各DN的行数差距较大,最大的为63000000,最小的只有15000000,差了4倍。这个差距对于数据扫描的性能影响还可以接受,但如果上层有join算子,则影响较大。 通常,数据表在各DN上是hash分布的,因此分布列的选择很重要。通过table_skewness()来查看上述inventory表在各DN的数据分布倾斜,查询结果如下: 1 2 3 4 5 6 7 8 910111213141516171819202122 gaussdb=# select table_skewness('inventory'); table_skewness ------------------------------------------ ("dn_6015_6016 ",63000000,8.046%) ("dn_6013_6014 ",60000000,7.663%) ("dn_6023_6024 ",60000000,7.663%) ("dn_6027_6028 ",60000000,7.663%) ("dn_6017_6018 ",54000000,6.897%) ("dn_6021_6022 ",54000000,6.897%) ("dn_6007_6008 ",51000000,6.513%) ("dn_6011_6012 ",51000000,6.513%) ("dn_6005_6006 ",45000000,5.747%) ("dn_6001_6002 ",42000000,5.364%) ("dn_6029_6030 ",42000000,5.364%) ("dn_6031_6032 ",39000000,4.981%) ("dn_6035_6036 ",39000000,4.981%) ("dn_6009_6010 ",36000000,4.598%) ("dn_6003_6004 ",27000000,3.448%) ("dn_6033_6034 ",24000000,3.065%) ("dn_6019_6020 ",21000000,2.682%) ("dn_6025_6026 ",15000000,1.916%)(18 rows) 通过查询建表定义,可以发现,目前该表是以inv_date_sk作为分布列的,导致存在倾斜。通过查看各列的数据分布情况,改为inv_item_sk作为分布列,则倾斜情况分布如下: 1 2 3 4 5 6 7 8 910111213141516171819202122 gaussdb=# select table_skewness('inventory'); table_skewness ------------------------------------------ ("dn_6001_6002 ",43934200,5.611%) ("dn_6007_6008 ",43829420,5.598%) ("dn_6003_6004 ",43781960,5.592%) ("dn_6031_6032 ",43773880,5.591%) ("dn_6033_6034 ",43763280,5.589%) ("dn_6011_6012 ",43683600,5.579%) ("dn_6013_6014 ",43551660,5.562%) ("dn_6027_6028 ",43546340,5.561%) ("dn_6009_6010 ",43508700,5.557%) ("dn_6023_6024 ",43484540,5.554%) ("dn_6019_6020 ",43466800,5.551%) ("dn_6021_6022 ",43458500,5.550%) ("dn_6017_6018 ",43448040,5.549%) ("dn_6015_6016 ",43247700,5.523%) ("dn_6005_6006 ",43200240,5.517%) ("dn_6029_6030 ",43181360,5.515%) ("dn_6025_6026 ",43179700,5.515%) ("dn_6035_6036 ",42960080,5.487%)(18 rows) 数据分布倾斜的问题得到解决。 除了table_skewness()视图外,当前版本还提供了table_distribution函数和PGXC_GET_TABLE_SKEWNESS视图,可以更加高效的查询各表的数据倾斜情况。
  • 参数说明 relname为查询中表table的名字,表有别名时,需要优先使用别名alias,此时relname=alias。当表名中有特殊符号,比如"@"、"."时,relname需要用""括起来,以避免和查询块和schema名的声明重合。比如表名relnametest@1,需要写做 "relnametest@1"。 schema为表所处的schema,可缺省,缺省时Hint不区分schema对relname进行查找。 queryblock为表所处的queryblock,可缺省,缺省时Hint不区分queryblock对relname进行查找。
  • 语句下推介绍 目前,GaussDB优化器在分布式框架下制定语句的执行策略时,有三种执行计划方式:生成下推语句计划、生成分布式执行计划、生成发送语句的分布式执行计划。 下推语句计划:指直接将查询语句从CN发送到DN进行执行,然后将执行结果返回给CN。 分布式执行计划:指CN对查询语句进行编译和优化,生成计划树,再将计划树发送给DN进行执行,并在执行完毕后返回结果到CN。 发送语句的分布式执行计划:上述两种方式都不可行时,将可下推的查询部分组成查询语句(多为基表扫描语句)下推到DN进行执行,获取中间结果到CN,然后在CN执行剩下的部分。 在第3种策略中,要将大量中间结果从DN发送到CN,并且要在CN运行不能下推的部分语句,会导致CN成为性能瓶颈(带宽、存储、计算等)。在进行性能调优的时候,应尽量避免只能选择第3种策略的查询语句。 执行语句不能下推是因为语句中含有不支持下推的函数或者不支持下推的语法。一般都可以通过等价改写规避执行计划不能下推的问题。
  • 不支持下推的函数 首先介绍函数的易变性。在GaussDB中共分三种形态: IMMUTABLE 表示该函数在给出同样的参数值时总是返回同样的结果。 STABLE 表示该函数不能修改数据库,对相同参数值,在同一次表扫描里,该函数的返回值不变,但是返回值可能在不同SQL语句之间变化。 VOLATILE 表示该函数值可以在一次表扫描内改变,因此不会做任何优化。 函数易变性可以查询pg_proc的provolatile字段获得,i代表IMMUTABLE,s代表STABLE,v代表VOLATILE。另外,在pg_proc中的proshippable字段,取值范围为t/f/NULL,这个字段与provolatile字段一起用于描述函数是否下推。 如果函数的provolatile属性为i,则无论proshippable的值是否为t,则函数始终可以下推。 如果函数的provolatile属性为s或v,则仅当proshippable的值为t时,函数可以下推。 random,exec_hadoop_sql,exec_on_extension如果出现CTE中,也不下推。因为这种场景下下推可能出现结果错误。 对于用户自定义函数,可以在创建函数的时候指定provolatile和proshippable属性的值,详细请参考CREATE FUNCTION。 对于函数不能下推的场景: 如果是系统函数,建议根据业务等价替换这个函数。 如果是自定义函数,建议分析客户业务场景,看函数的provolatile和proshippable属性定义是否正确。
  • 统计信息调优介绍 GaussDB是基于代价估算生成的最优执行计划。优化器需要根据analyze收集的统计信息进行行数估算和代价估算,因此统计信息对优化器行数估算和代价估算起着至关重要的作用。通过analyze收集全局统计信息,主要包括:pg_class表中的relpages和reltuples;pg_statistic表中的stadistinct、stanullfrac、stanumbersN、stavaluesN、histogram_bounds等。
  • 算子级调优介绍 一个查询语句要经过多个算子步骤才会输出最终的结果。由于个别算子耗时过长导致整体查询性能下降的情况比较常见。这些算子是整个查询的瓶颈算子。通用的优化手段是EXPLAIN ANALYZE/PERFORMANCE命令查看执行过程的瓶颈算子,然后进行针对性优化。 如下面的执行过程信息中,Hashagg算子的执行时间占总时间的:(51016-13535)/ 56476 ≈66%,此处Hashagg算子就是这个查询的瓶颈算子,在进行性能优化时应当优先考虑此算子的优化。
  • 告警场景 目前支持对以下7种导致性能问题的场景上报告警。 多列/单列统计信息未收集 如果存在单列或者多列统计信息未收集,则上报相关告警。 需要特别注意的是,对于基于OBS外表(当前特性是实验室特性,使用时请联系华为工程师提供技术支持)的查询,如果未收集统计信息也会上报统计信息未收集的告警,但是由于OBS外表(当前特性是实验室特性,使用时请联系华为工程师提供技术支持)的analyze的性能比较差,因此,需要用户对这种场景下告警是否通过analyze收集统计信息,以获取更优的性能,和查询本身的复杂度做权衡。 告警信息示例: 整表的统计信息未收集: Statistic Not Collect: schema_test.t1 单列统计信息未收集: Statistic Not Collect: schema_test.t2(c1,c2) 多列统计信息未收集: Statistic Not Collect: schema_test.t3((c1,c2)) 单列和多列统计信息未收集: Statistic Not Collect: schema_test.t4(c1,c2) schema_test.t4((c1,c2)) SQL不下推 对于不下推的SQL,尽可能详细上报导致不下推的原因。调优方法可以参考案例语句下推调优。 对于函数导致的不下推,告警导致不下推的函数名信息; 对于不支持下推的语法,会告警对应语法不支持下推,例如:含有With Recursive,Distinct On,row表达式,返回值为record类型的,会告警相应语法不支持下推等等。 告警信息示例: SQL is not plan-shipping, reason : "With Recursive" can not be shipped"SQL is not plan-shipping, reason : "Function now() can not be shipped"SQL is not plan-shipping, reason : "Function string_agg() can not be shipped" HashJoin中大表做内表 如果在表连接过程中使用了Hashjoin(可以在GS_WLM_SESSION_HISTORY的query_plan字段中查看到),且连接的内表行数是外表行数的10倍或以上;同时内表在每个DN上的平均行数大于10万行,且发生了下盘,则上报相关告警。调优方法可以参考使用plan hint调优执行计划。 告警信息示例: PlanNode[7] Large Table is INNER in HashJoin “Vector Hash Aggregate” 大表等值连接使用Nestloop 如果在表连接过程中使用了nestloop(可以在GS_WLM_SESSION_HISTORY的query_plan字段中查看到),并且两个表中较大表的行数平均每个DN上的行数大于10万行、表的连接中存在等值连接,则上报相关告警。调优方法可以参考使用plan hint调优执行计划。 告警信息示例: PlanNode[5] Large Table with Equal-Condition use Nestloop"Nested Loop" 大表Broadcast 如果在Broadcast算子中,平均每DN的行数大于10万行,则告警大表broadcast。调优方法可以参考使用plan hint调优执行计划。 告警信息示例: PlanNode[5] Large Table in Broadcast "Streaming(type: BROADCAST dop: 1/2)" 数据倾斜 某表在各DN上的分布,存在某DN上的行数是另一DN上行数的10倍或以上,且有DN中的行数大于10万行,则上报相关告警。 告警信息示例: PlanNode[6] DataSkew:"Seq Scan", min_dn_tuples:0, max_dn_tuples:524288 估算不准 如果优化器的估算行数和实际行数中的较大值平均每DN行数大于10万行,并且估算行数和实际行数中较大值是较小值的10倍或以上,则上报相关告警。调优方法可以参考使用plan hint调优执行计划。 告警信息示例: PlanNode[5] Inaccurate Estimation-Rows: "Hash Join" A-Rows:0, E-Rows:52488
  • 规格约束 告警字符串长度上限为2048。如果告警信息超过这个长度(例如存在大量未收集统计信息的超长表名,列名等信息)则不告警,只上报warning: WARNING, "Planner issue report is truncated, the rest of planner issues will be skipped" 如果query存在limit节点(即查询语句中包含limit),则不会上报limit节点以下的Operator级别的告警。 对于“数据倾斜”和“估算不准”两种类型告警,在某一个plan树结构下,只上报下层节点的告警,上层节点不再重复告警。这主要是因为这两种类型的告警可能是因为底层触发上层的。例如,如果在scan节点已经存在数据倾斜,那么在上层的hashagg等其他算子很可能也出现数据倾斜。
  • 选择数据类型 高效数据类型,主要包括以下三方面: 尽量使用执行效率比较高的数据类型 一般来说整型数据运算(包括=、>、<、≧、≦、≠等常规的比较运算,以及group by)的效率比字符串、浮点数要高。比如某客户场景中对列存表进行点查询,filter条件在一个numeric列上,执行时间为10+s;修改numeric为int类型之后,执行时间缩短为1.8s左右。 尽量使用短字段的数据类型 长度较短的数据类型不仅可以减小数据文件的大小,提升I/O性能;同时也可以减小相关计算时的内存消耗,提升计算性能。比如对于整型数据,如果可以用smallint就尽量不用int,如果可以用int就尽量不用bigint。 使用一致的数据类型 表关联列尽量使用相同的数据类型。如果表关联列数据类型不同,数据库必须动态地转化为相同的数据类型进行比较,这种转换会带来一定的性能开销。 父主题: 审视和修改表定义
  • 选择分布列 Hash分布表的分布列选取至关重要,需要满足以下原则: 列值应比较离散,以便数据能够均匀分布到各个DN。例如,考虑选择表的主键为分布列,如在人员信息表中选择身份证号码为分布列。 在满足第一条原则的情况下尽量不要选取存在常量filter的列。例如,表dwcjk相关的部分查询中出现dwcjk的列zqdh存在常量的约束(例如zqdh=’000001’),那么就应当尽量不用zqdh做分布列。 在满足前两条原则的情况,考虑选择查询中的连接条件为分布列,以便Join任务能够下推到DN中执行,且减少DN之间的通信数据量。 对于Hash分表策略,如果分布列选择不当,可能导致数据倾斜,查询时出现部分DN的I/O短板,从而影响整体查询性能。因此在采用Hash分表策略之后需对表的数据进行数据倾斜性检查,以确保数据在各个DN上是均匀分布的。可以使用以下SQL检查数据倾斜性 12345 select xc_node_id, count(1) from tablename group by xc_node_id order by xc_node_id desc; 其中xc_node_id对应DN,一般来说,不同DN的数据量相差5%以上即可视为倾斜,如果相差10%以上就必须要调整分布列。 GaussDB支持多分布列特性,可以更好地满足数据分布的均匀性要求。 Range/List分布表的分布列由用户根据实际需要进行选择。除了需要选择合适的分布列,还需要注意分布规则对数据分布的影响。 父主题: 审视和修改表定义
  • 使用分区表 分区表是把逻辑上的一张表根据某种方案分成几张物理块进行存储。这张逻辑上的表称之为分区表,物理块称之为分区。分区表是一张逻辑表,不存储数据,数据实际是存储在分区上的。分区表和普通表相比具有以下优点: 改善查询性能:对分区对象的查询可以仅搜索自己关心的分区,提高检索效率。 增强可用性:如果分区表的某个分区出现故障,表在其他分区的数据仍然可用。 方便维护:如果分区表的某个分区出现故障,需要修复数据,只修复该分区即可。 GaussDB支持的分区表为范围分区表,列表分区表,哈希分区表。 范围分区表:将数据基于范围映射到每一个分区。这个范围是由创建分区表时指定的分区键决定的。分区键经常采用日期,例如将销售数据按照月份进行分区。 列表分区表:将数据中包含的键值分别存储在不同的分区中,依次将数据映射到每一个分区,分区中包含的键值由创建分区表时指定。 哈希分区表:将数据根据内部哈希算法依次映射到每一个分区中,包含的分区个数由创建分区表时指定 父主题: 审视和修改表定义
  • 选择分布方式 复制表(Replication)方式将表中的全量数据在集群的每一个DN实例上保留一份。主要适用于记录集较小的表。这种存储方式的优点是每个DN上都有该表的全量数据,在join操作中可以避免数据重分布操作,从而减小网络开销,同时减少了plan segment(每个plan segment都会起对应的线程);缺点是每个DN都保留了表的完整数据,造成数据的冗余。一般情况下只有较小的维度表才会定义为Replication表。 哈希(Hash)表将表中某一个或几个字段进行hash运算后,生成对应的hash值,根据DN实例与哈希值的映射关系获得该元组的目标存储位置。对于Hash分布表,在读/写数据时可以利用各个节点的IO资源,大大提升表的读/写速度。一般情况下大表定义为Hash表。 范围(Range)和列表(List)分布是由用户自定义的分布策略,根据分布列的取值落入满足一定范围或者具体值的对应目标DN,这两种分布方式便于用户灵活地进行数据管理,但对用户本身的数据抽象能力有一定的要求。 策略 描述 适用场景 Hash 表数据通过hash方式散列到集群中的所有DN实例上。 数据量较大的事实表。 Replication 集群中每一个DN实例上都有一份全量表数据。 小表、维度表。 Range 表数据对指定列按照范围进行映射,分布到对应DN。 用户需要自定义分布规则的场景。 List 表数据对指定列按照具体值进行映射,分布到对应DN。 用户需要自定义分布规则的场景。 如图1所示,复制表如图中的表T1,哈希表如图中的表T2。 图1 复制表和哈希表 父主题: 审视和修改表定义
  • 选择存储模型 进行数据库设计时,表设计上的一些关键项将严重影响后续整库的查询性能。表设计对数据存储也有影响:好的表设计能够减少I/O操作及最小化内存使用,进而提升查询性能。 表的存储模型选择是表定义的第一步。客户业务属性是表的存储模型的决定性因素,依据下面表格选择适合当前业务的存储模型。 存储模型 适用场景 行存 点查询(返回记录少,基于索引的简单查询)。 增删改比较多的场景。 列存 统计分析类查询 (group , join多的场景)。 父主题: 审视和修改表定义
  • 调试 用户可以根据自己的需要,通过修改实例数据目录下的postgresql.conf文件中特定的配置参数来控制日志的输出,从而更好的了解数据库的运行状态。 可调整的配置参数请参见表1。 表1 配置参数 参数名称 描述 取值范围 备注 client_min_messages 配置发送到客户端信息的级别。 DEBUG5 DEBUG4 DEBUG3 DEBUG2 DEBUG1 LOG NOTICE WARNING ERROR FATAL PANIC 默认值:NOTICE 。 设置级别后,发送到客户端的信息包含所设级别及以下所有低级别会发送的信息。级别越低,发送的信息越少。 log_min_messages 配置写到服务器日志里信息的级别。 DEBUG5 DEBUG4 DEBUG3 DEBUG2 DEBUG1 INFO NOTICE WARNING ERROR LOG FATAL PANIC 默认值:WARNING。 指定某一级别后,写到日志的信息包含所有更高级别会输出的信息。级别越高,服务器日志的信息越少。 log_min_error_statement 配置写到服务器日志中错误SQL语句的级别。 DEBUG5 DEBUG4 DEBUG3 DEBUG2 DEBUG1 INFO NOTICE WARNING ERROR FATAL PANIC 缺省值:ERROR。 所有导致一个特定级别(或者更高级别)错误的SQL语句都将记录在服务器日志中。 只有系统管理员可以修改该参数。 log_min_duration_statement 配置语句执行持续的最短时间。如果某个语句的持续时间大于或者等于设置的毫秒数,则会在日志中记录该语句及其持续时间。打开这个选项可以方便地跟踪需要优化的查询。 INT类型。 默认值:-1。 单位:毫秒。 设置为-1表示关闭这个功能。 只有系统管理员可以修改该参数。 log_connections/log_disconnections 配置是否在每次会话连接或结束时向服务器日志里打印一条信息。 on:每次会话连接或结束时向日志里打印一条信息。 off:每次会话连接或结束时不向日志里打印信息。 默认值:off。 - log_duration 配置是否记录每个已完成语句的持续时间。 on:记录每个已完成语句的持续时间。 off:不记录已完成语句的持续时间。 默认值:off。 只有系统管理员可以修改该参数。 log_statement 配置日志中记录哪些SQL语句。 none:不记录任何SQL语句。 ddl:记录数据定义语句。 mod:记录数据定义语句和数据操作语句。 all :记录所有语句。 默认值: none。 只有系统管理员可以修改该参数。 log_hostname 配置是否记录主机名。 on:记录主机名。 off:不记录主机名。 默认值:off。 缺省时,连接日志只记录所连接主机的IP地址。打开这个选项会同时记录主机名。 该参数同时影响查看审计结果、GS_WLM_SESSION_HISTORY、PG_STAT_ACTIVITY和GUC参数log_line_prefix。 上表有关参数级别的说明请参见表2。 表2 日志级别参数说明 级别 说明 DEBUG[1-5] 提供开发人员使用的信息。5级为最高级别,依次类推,1级为最低级别。 INFO 提供用户隐含要求的信息。如在VACUUM VERBOSE过程中的信息。 NOTICE 提供可能对用户有用的信息。如长标识符的截断,作为主键一部分创建的索引。 WARNING 提供给用户的警告。如在事务块范围之外的COMMIT。 ERROR 报告导致当前命令退出的错误。 LOG 报告一些管理员感兴趣的信息。如检查点活跃性。 FATAL 报告导致当前会话终止的原因。 PANIC 报告导致所有会话退出的原因。 父主题: 应用程序开发教程
  • 审视和修改表定义概述 在分布式框架下,数据分布在各个DN上。一个或者几个DN的数据存在一块物理存储设备上,好的表定义至少需要达到以下几个目标: 表数据均匀分布在各个DN上,以防止单个DN对应的存储设备空间不足造成集群有效容量下降。选择合适分布列,避免数据分布倾斜可以实现该点。 表Scan压力均匀分散在各个DN上,以避免单DN的Scan压力过大,形成Scan的单节点瓶颈。分布列不选择基表上等值filter中的列可以实现该点。 减少扫描数据量。通过分区的剪枝机制可以实现该点。 尽量减少随机IO。通过聚簇/局部聚簇可以实现该点。 尽量避免数据shuffle,减小网络压力。通过选择join-condition或者group by列为分布列可以最大程度的实现这点。 从上述描述来看表定义中最重要的一点是分布列的选择。创建表定义一般遵循图1所示流程。表定义在数据库设计阶段创建,在SQL调优过程中进行审视和修改。 图1 表定义流程 父主题: 审视和修改表定义
  • 背景信息 ANALYZE语句可收集与数据库中表内容相关的统计信息,统计结果存储在系统表PG_STATISTIC中。查询优化器会使用这些统计数据,以生成最有效的执行计划。 建议在执行了大批量插入/删除操作后,例行对表或全库执行ANALYZE语句更新统计信息。目前默认收集统计信息的采样比例是30000行(即:guc参数default_statistics_target默认设置为100),如果表的总行数超过一定行数(大于1600000),建议设置guc参数default_statistics_target为-2,即按2%收集样本估算统计信息。 对于在批处理脚本或者存储过程中生成的中间表,也需要在完成数据生成之后显式的调用ANALYZE。 对于表中多个列有相关性且查询中有同时基于这些列的条件或分组操作的情况,可尝试收集多列统计信息,以便查询优化器可以更准确地估算行数,并生成更有效的执行计划。 若表上存在全局二级索引,则需要对基表执行ANALYZE之后再对全局二级索引执行ANALYZE。
  • 调优手段之统计信息 GaussDB优化器是典型的基于代价的优化 (Cost-Based Optimization,简称CBO)。在这种优化器模型下,数据库根据表的元组数、字段宽度、NULL记录比率、distinct值、MCV值、HB值等表的特征值,以及一定的代价计算模型,计算出每一个执行步骤的不同执行方式的输出元组数和执行代价(cost),进而选出整体执行代价最小/首元组返回代价最小的执行方式进行执行。这些特征值就是统计信息。从上面描述可以看出统计信息是查询优化的核心输入,准确的统计信息将帮助规划器选择最合适的查询规划,一般来说我们通过analyze语法收集整个表或者表的若干个字段的统计信息,周期性地运行ANALYZE,或者在对表的大部分内容做了更改之后马上运行它是个好习惯。
  • 调优手段之GUC参数 查询优化的主要目的是为查询语句选择高效的执行方式。 如下SQL语句: 12 select count(1) from customer inner join store_sales on (ss_customer_sk = c_customer_sk); 在执行customer inner join store_sales的时候,GaussDB支持Nested Loop、Merge Join和Hash Join三种不同的Join方式。优化器会根据表customer和表store_sales的统计信息估算结果集的大小以及每种Join方式的执行代价,然后对比选出执行代价最小的执行计划。 正如前面所说,执行代价计算都是基于一定的模型和统计信息进行估算,当因为某些原因代价估算不能反映真实的cost的时候,我们就需要通过GUC参数设置的方式让执行计划倾向更优规划。
  • 操作步骤 收集SQL中涉及到的所有表的统计信息。在数据库中,统计信息是规划器生成计划的源数据。没有收集统计信息或者统计信息陈旧往往会造成执行计划严重劣化,从而导致性能问题。从经验数据来看,10%左右性能问题是因为没有收集统计信息。具体请参见更新统计信息。 通过查看执行计划来查找原因。如果SQL长时间运行未结束,通过EXPLAIN命令查看执行计划,进行初步定位。如果SQL可以运行出来,则推荐使用EXPLAIN ANALYZE或EXPLAIN PERFORMANCE查看执行计划及实际运行情况,以便更精准地定位问题原因。有关执行计划的详细介绍请参见SQL执行计划介绍。 审视和修改表定义。 针对EXPLAIN或EXPLAIN PERFORMANCE信息,定位SQL慢的具体原因以及改进措施,具体参见典型SQL调优点。 通常情况下,有些SQL语句可以通过查询重写转换成等价的,或特定场景下等价的语句。重写后的语句比原语句更简单,且可以简化某些执行步骤达到提升性能的目的。查询重写方法在各个数据库中基本是通用的。经验总结:SQL语句改写规则介绍了几种常用的通过改写SQL进行调优的方法。
  • SQL调优指南 SQL调优的唯一目的是“资源利用最大化”,即CPU、内存、磁盘IO、网络IO四种资源利用最大化。所有调优手段都是围绕资源使用开展的。所谓资源利用最大化是指SQL语句尽量高效,节省资源开销,以最小的代价实现最大的效益。比如做典型点查询的时候,可以用seqscan+filter(即读取每一条元组和点查询条件进行匹配)实现,也可以通过indexscan实现,显然indexscan可以以更小的代价实现相同的效果。 根据硬件资源和客户的业务特征确定合理的集群部署方案和表定义是数据库在多数情况下满足性能要求的基础。下文的调优说明假设您已根据“软件安装”指引在安装过程中按照合理的集群方案完成了安装,且已经根据“开发设计建议”的指引进行了数据库设计。 Query执行流程 SQL执行计划介绍 调优流程 更新统计信息 审视和修改表定义 典型SQL调优点 经验总结:SQL语句改写规则 SQL调优关键参数调整 使用Plan Hint进行调优 检查隐式转换的性能问题 使用向量化执行引擎进行调优 使用SQL PATCH进行调优 实际调优案例
  • 执行计划显示信息 除了设置不同的执行计划显示格式外,还可以通过不同的EXPLAIN用法,显示不同详细程度的执行计划信息。常见有如下几种,关于更多用法请参见EXPLAIN语法说明。 EXPLAIN statement: 只生成执行计划,不实际执行。其中statement代表SQL语句。 EXPLAIN ANALYZE statement:生成执行计划,进行执行,并显示执行的概要信息。显示中加入了实际的运行时间统计,包括在每个规划节点内部花掉的总时间(以毫秒计)和它实际返回的行数。 EXPLAIN PERFORMANCE statement:生成执行计划,进行执行,并显示执行期间的全部信息。 为了测量运行时在执行计划中每个节点的开销,EXPLAIN ANALYZE或EXPLAIN PERFORMANCE会在当前查询执行上增加性能分析的开销。在一个查询上运行EXPLAIN ANALYZE或EXPLAIN PERFORMANCE有时会比普通查询明显的花费更多的时间。超支的数量依赖于查询的本质和使用的平台。 因此,当定位SQL运行慢问题时,如果SQL长时间运行未结束,建议通过EXPLAIN命令查看执行计划,进行初步定位。如果SQL可以运行出来,则推荐使用EXPLAIN ANALYZE或EXPLAIN PERFORMANCE查看执行计划及其实际的运行信息,以便更精准地定位问题原因。
  • type ColumnType type ColumnType如下表所示。 方法 描述 返回值 (ci *ColumnType)DatabaseTypeName() 返回列类型的数据库系统名称。返回空字符串表示该驱动类型名字并未被支持。 error (ci *ColumnType)DecimalSize() 返回小数类型的范围和精度。 返回值ok的值为false时,说明给定的类型不可用或者不支持。 precision, scale int64, ok bool (ci *ColumnType)Length() 返回数据列类型长度。返回值ok的值为false时,说明给定的类型不存在长度。 length int64, ok bool (ci *ColumnType)ScanType() 返回一种Go类型,该类型能够在Rows.scan进行扫描时使用。 reflect.Type (ci *ColumnType)Name() 返回数据列的名字。 string 父主题: Go接口参考
  • 参数说明 参数 参数说明 ctx 表示给定的上下文。 query 被执行的sql语句。 args 被执行sql语句需要绑定的参数。支持按位置绑定和按名称绑定,详情见如下示例。 opts 事务隔离级别和事务访问模式,其中事务隔离级别(opts.Isolation)支持范围为sql.LevelReadUncommitted,sql.LevelReadCommitted,sql.LevelRepeatableRead,sql.LevelSerializable。事务访问模式(opts.ReadOnly)支持范围为true(read only)和false(read write)。
  • 参数 表1 数据库连接参数 参数名称 参数说明 host 主机IP地址,也可通过环境变量${PGHOST}来指定。 port 主机服务器的端口号,也可通过环境变量${PGPORT}来指定。 dbname 数据库名,也可通过环境变量${PGDATABASE}来指定。 user 要连接的用户名,也可通过环境变量${PGUSER}来指定。 password 要连接用户对应的连接密码。 connect_timeout 用于连接服务器操作的超时值,也可通过环境变量${PGCONNECT_TIMEOUT}来指定。 sslmode 启用SSL加密的方式,也可通过环境变量${PGSSLMODE}来指定。 参数取值范围: disable:不使用ssl安全连接。 allow:如果数据库服务器要求使用,则可以使用SSL安全加密连接,但不验证数据库服务器的真实性。 prefer:如果数据库支持,那么首选使用SSL安全加密连接,但不验证数据库服务器的真实性。 require:必须使用SSL安全连接,但是只做了数据加密,而并不验证数据库服务器的真实性。 verify-ca:必须使用SSL安全连接,并验证服务器是否具有由可信任的证书机构签发的证书。 verify-full:必须使用SSL安全连接,并且验证服务器是否具有由可信任的证书机构签发的证书,以及验证服务器主机名是否与证书中的一致。 sslkey 指定用于客户端证书的密钥位置,如果需要走SSL连接,并且该参数未指定,可通过设置环境变量${PGSSLKEY}来指定。 sslcert 指定客户端SSL证书的文件名,或者通过设置环境变量${PGSSLCERT}来指定。 sslrootcert 指定一个包含SSL证书机构(CA)证书的文件名称,或者通过设置环境变量${PGSSLROOTCERT}来指定。 sslcrl 指定ssl证书撤销列表(CRL)的文件名。列在这个文件中的证书如果存在,在尝试认证该服务器证书时会被拒绝,从而连接失败。也可通过环境变量${PGSSLCRL}来指定。 sslpassword 指定对秘钥解密成明文的密码短语,当指定该参数的时候表示sslkey是一个加密存储的文件,当前sslkey支持des/aes加密方式。 说明: DES加密算法安全性低,存在安全风险,建议使用更安全的加密算法。 disable_prepared_binary_result 字符串类型,若设置为yes,表示此连接在从预准备语句接收查询结果时不应使用二进制格式。该参数仅用于调试。 取值范围:yes/no。 binary_parameters 字符串类型,该参数表示是否始终以二进制形式发送[]byte。取值范围:yes/no。若该参数设置为yes,建议绑定参数按照[]byte绑定,可以减少内部类型转换。 target_session_attrs 指定数据库的连接类型,该参数用于识别主备节点,也可通过环境变量${PGTARGETSESSIONATTRS}来指定。默认值为“any”,共有六种:any、master、slave、preferSlave、read-write、read-only。 any:尝试连接URL连接串中的任何一个数据节点。 master:尝试连接到URL连接串中的主节点,如果找不到就抛出异常。 slave:尝试连接到URL连接串中的备节点,如果找不到就抛出异常。 preferSlave:尝试连接到URL连接串中的备数据节点(如果有可用的话),否则连接到主数据节点。 read-write:读写模式,表示只能连接主节点。 read-only:只读模式,表示只能连接备节点。 loggerLevel 日志级别,打印相关调试信息,也可通过环境变量${PGLOGGERLEVEL}来指定。 支持trace/debug/info/warn/error/none,级别从高到低。 application_name 设置正在使用连接的GO驱动的名称。缺省值为go-driver,该参数不建议用户配置。 RuntimeParams 要在连接上设置为会话默认值的运行时参数。例如参数名search_path,application_name,timezone等。各参数的详细介绍参见客户端连接缺省设置,可通过show语法查看参数是否设置成功。 autoBalance 字符串类型,分布式环境下,使用该参数开启负载均衡连接。默认值为false,共有六种:true、balance、roundrobin、shuffle、priorityn、false。 设置为true、balance或roundrobin时,表示开启go sql负载均衡功能,将应用程序的多个连接均衡到数据库集群中各个可用的CN。 例如:gauss://user:password@host1:port1,host2:port2/database?autoBalance=true Driver将定期获取(周期刷新可使用参数refreshCNIpsTime配置,默认为10s)整个集群可用CN列表,比如获取到的列表为:host1:port1,host2:port2,host3:port3,host4:port4。 host1和host2在autoBalance启用时,仅在首次连接做高可用用途,后续Driver将从host3,host4,host1,host2中依次选择可用的CN刷新可用CN列表,后续用户调用的Connector.Connect将使用RoundRobin算法从host1,host2,host3,host4选取CN主机进行连接。 设置为priorityn表示开启Driver优先级负载均衡功能,将应用程序的多个连接首先均衡到url上配置的前n个中可用的CN数据库节点,当url上配置前n个节点全部不可用时,连接会随机分配到数据库集群中其他可用CN数据库节点。n为数字,不小于0,且小于url上配置的CN数量。 例如:gauss://user:password@host1:port1,host2:port2,host3:port3/database?autoBalance=priority2 Driver将定期获取(周期按refreshCNIpsTime定义)整个集群可用CN列表,比如获取到的列表为:host1:port1,host2:port2,host3:port3,host4:port4,host5:port5,host6:port6,其中host1和host2处于AZ1,host3和host4处于AZ2。 Driver将从优先从host1,host2中做负载均衡,host1和host2全部不可用才从host3, host4, host5, host6中随机选择CN主机连接。 设置为shuffle表示开启Driver随机负载均衡功能,将应用程序的多个连接随机均衡到数据库集群中的各个可用CN。 例如:gauss://user:password@host1:port1,host2:port2,host3:port3/database?autoBalance=shuffle Driver将定期获取(周期刷新可使用参数refreshCNIpsTime配置,默认为10S)整个集群的可用CN列表,比如获取到的列表为:host1:port1,host2:port2,host3:port3,host4:port4。 host1:port1,host2:port2,host3:port3,仅在首次连接做高可用,后续连接将在刷新后的CN列表中,使用shuffle算法随机选用一个CN节点进行连接。 设置为false时为集中式场景,不开启Driver负载均衡功能和优先级负载均衡功能。默认为false。 注意: 负载均衡是基于连接级别,不是基于事务级别。如果连接是长连接,并且连接上的负载不均衡,无法保证CN主机上的负载是均衡的。 负载均衡仅能在分布式场景下使用,集中式环境中不可使用。 recheckTime integer类型,定期检测数据库集群中CN状态,获取可用CN的IP列表的时间间隔,取值范围为5到60秒,默认为10秒。 usingEip boolean类型。此值用于控制是否使用弹性公网IP做负载均衡。默认值为true,表示使用弹性公网IP做负载均衡;false表示使用数据IP做负载均衡。
  • 客户端配置 上传证书文件,将在服务端配置(服务端配置请联系管理员)操作中生成的文件client.key、client.crt、cacert.pem放置在客户端。 示例一: // 以双向认证为例func main() { dsnStr := "host=127.0.0.1,127.0.0.2 port=1611,1622 user=testuser password=XXXXXX dbname=postgres autoBalance=shuffle sslcert=certs/client.crt sslkey=certs/client.key sslpassword=XXXXXXXX " parameters := []string { " sslmode=require", " sslmode=verify-ca sslrootcert=certs/cacert.pem", } for _, param := range parameters { db, err:= sql.Open("opengauss", dsnStr+param) if err != nil { log.Fatal(err) } var f1 int err = db.QueryRow("select 1").Scan(&f1) if err != nil { log.Fatal(err) } else { fmt.Printf("RESULT: select 1: %d\n", f1) } db.Close() }} 示例二: // 以验证sslpassword为主func main() { dsnStr := "host=127.0.0.1,127.0.0.2 port=1611,1622 user=testuser password=XXXXXXXX dbname=postgres autoBalance=shuffle" connStrs := []string { " sslmode=verify-ca sslcert=certs/client_rsa.crt sslkey=certs/client_rsa.key sslpassword=XXXXXXXX sslrootcert=certs/cacert_rsa.pem", " sslmode=verify-ca sslcert=certs/client_ecdsa.crt sslkey=certs/client_ecdsa.key sslpassword=XXXXXXXX sslrootcert=certs/cacert_ecdsa.pem", } for _, connStr := range connStrs { db, err := sql.Open("opengauss", dsnStr + connStr) if err != nil { log.Fatal(err) } var f1 int err = db.QueryRow("select 1").Scan(&f1) if err != nil { if !strings.HasPrefix(err.Error(), "connect failed.") { log.Fatal(err) } } db.Close() }}
共100000条