华为云用户手册

  • 语法格式 1 MOVE [ direction [ FROM | IN ] ] cursor_name; 其中direction子句为可选参数。 1 2 3 4 5 6 7 8 91011121314 NEXT | PRIOR | FIRST | LAST | ABSOLUTE count | RELATIVE count | count | ALL | FORWARD | FORWARD count | FORWARD ALL | BACKWARD | BACKWARD count | BACKWARD ALL
  • 注意事项 如果游标定义了NO SCROLL,则不允许使用例如FETCH BACKWARD之类的反向抓取。 NEXT,PRIOR,FIRST,LAST,ABSOLUTE,RELATIVE形式在恰当地移动游标之后抓取一条记录。如果后面没有数据行,就返回一个空的结果,此时游标就会停在查询结果的最后一行之后(向后查询时)或者第一行之前(向前查询时)。 FORWARD和BACKWARD形式在向前或者向后移动的过程中抓取指定的行数,然后把游标定位在最后返回的行上;或者是,如果count大于可用的行数,则在所有行之后(向后查询时)或者之前(向前查询时)。 RELATIVE 0,FORWARD 0,BACKWARD 0都要求在不移动游标的前提下抓取当前行,也就是重新抓取最近刚抓取过的行。除非游标定位在第一行之前或者最后一行之后,这个动作都应该成功,而在那两种情况下,不返回任何行。 当FETCH的游标上涉及列存表时,不支持BACKWARD、PRIOR、FIRST等涉及反向获取操作。
  • 示例 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 --SELECT语句,用一个游标读取一个表。开始一个事务。postgres=# START TRANSACTION;--建立一个名为cursor1的游标。postgres=# CURSOR cursor1 FOR SELECT * FROM tpcds.customer_address ORDER BY 1;--抓取头3行到游标cursor1里。postgres=# FETCH FORWARD 3 FROM cursor1; ca_address_sk | ca_address_id | ca_street_number | ca_street_name | ca_street_type | ca_suite_number | ca_city | ca_county | ca_state | ca_zip | ca_country | ca_gmt_offset | ca_location_type ---------------+------------------+------------------+--------------------+-----------------+-----------------+-----------------+-----------------+----------+------------+---------------+---------------+---------------------- 1 | AAAAAAAABAAAAAAA | 18 | Jackson | Parkway | Suite 280 | Fairfield | Maricopa County | AZ | 86192 | United States | -7.00 | condo 2 | AAAAAAAACAAAAAAA | 362 | Washington 6th | RD | Suite 80 | Fairview | Taos County | NM | 85709 | United States | -7.00 | condo 3 | AAAAAAAADAAAAAAA | 585 | Dogwood Washington | Circle | Suite Q | Pleasant Valley | York County | PA | 12477 | United States | -5.00 | single family (3 rows)--关闭游标并提交事务。postgres=# CLOSE cursor1;--结束一个事务。postgres=# END;--VALUES子句,用一个游标读取VALUES子句中的内容。开始一个事务。postgres=# START TRANSACTION;--建立一个名为cursor2的游标。postgres=# CURSOR cursor2 FOR VALUES(1,2),(0,3) ORDER BY 1;--抓取头2行到游标cursor2里。postgres=# FETCH FORWARD 2 FROM cursor2;column1 | column2---------+---------0 | 31 | 2(2 rows)--关闭游标并提交事务。postgres=# CLOSE cursor2;--结束一个事务。postgres=# END;--WITH HOLD游标的使用,开启事务。postgres=# START TRANSACTION;--创建一个with hold游标。postgres=# DECLARE cursor1 CURSOR WITH HOLD FOR SELECT * FROM tpcds.customer_address ORDER BY 1;--抓取头2行到游标cursor1里。postgres=# FETCH FORWARD 2 FROM cursor1; ca_address_sk | ca_address_id | ca_street_number | ca_street_name | ca_street_type | ca_suite_number | ca_city | ca_county | ca_state | ca_zip | ca_country | ca_gmt_offset | ca_location_type ---------------+------------------+------------------+--------------------+-----------------+-----------------+-----------------+-----------------+----------+------------+---------------+---------------+---------------------- 1 | AAAAAAAABAAAAAAA | 18 | Jackson | Parkway | Suite 280 | Fairfield | Maricopa County | AZ | 86192 | United States | -7.00 | condo 2 | AAAAAAAACAAAAAAA | 362 | Washington 6th | RD | Suite 80 | Fairview | Taos County | NM | 85709 | United States | -7.00 | condo (2 rows)--结束事务。postgres=# END;--抓取下一行到游标cursor1里。postgres=# FETCH FORWARD 1 FROM cursor1; ca_address_sk | ca_address_id | ca_street_number | ca_street_name | ca_street_type | ca_suite_number | ca_city | ca_county | ca_state | ca_zip | ca_country | ca_gmt_offset | ca_location_type ---------------+------------------+------------------+--------------------+-----------------+-----------------+-----------------+-----------------+----------+------------+---------------+---------------+---------------------- 3 | AAAAAAAADAAAAAAA | 585 | Dogwood Washington | Circle | Suite Q | Pleasant Valley | York County | PA | 12477 | United States | -5.00 | single family (1 row)--关闭游标。postgres=# CLOSE cursor1;
  • 参数说明 direction_clause 定义抓取数据的方向。 取值范围: NEXT(缺省值) 从当前关联位置开始,抓取下一行。 PRIOR 从当前关联位置开始,抓取上一行。 FIRST 抓取查询的第一行(和ABSOLUTE 1相同)。 LAST 抓取查询的最后一行(和ABSOLUTE -1相同)。 ABSOLUTE count 抓取查询中第count行。 ABSOLUTE抓取不会比用相对位移移动到需要的数据行更快,因为下层的实现必须遍历所有中间的行。 count取值范围:有符号的整数 count为正数,就从查询结果的第一行开始,抓取第count行。当count小于当前游标位置时,涉及到rewind操作,暂不支持。 count为负数或0,涉及到反向扫描操作,暂不支持。 RELATIVE count 从当前关联位置开始,抓取随后或前面的第count行。 取值范围:有符号的整数 count为正数就抓取当前关联位置之后的第count行。 count为负数或0,涉及到反向扫描操作,暂不支持。 如果当前行没有数据的话,RELATIVE 0返回空。 count 抓取随后的count行(和FORWARD count一样)。 ALL 从当前关联位置开始,抓取所有剩余的行(和FORWARD ALL一样)。 FORWARD 抓取下一行(和NEXT一样)。 FORWARD count 与RELATIVE count的效果相同,从当前关联位置开始,抓取随后或前面的第count行。 FORWARD ALL 从当前关联位置开始,抓取所有剩余行。 BACKWARD 从当前关联位置开始,抓取前面一行(和PRIOR一样) 。 BACKWARD count 从当前关联位置开始,抓取前面的count行(向后扫描)。 取值范围:有符号的整数 count为正数就抓取当前关联位置之前的第count行。 count为负数就抓取当前关联位置之后的第abs(count)行。 如果有数据的话,BACKWARD 0重新抓取当前行。 BACKWARD ALL 从当前关联位置开始,抓取所有前面的行(向后扫描) 。 { FROM | IN } cursor_name 使用关键字FROM或IN指定游标名称。 取值范围:已创建的游标的名称。
  • 功能描述 FETCH通过已创建的游标来检索数据。 每个游标都有一个供FETCH使用的关联位置。游标的关联位置可以在查询结果的第一行之前,或者在结果中的任意行,或者在结果的最后一行之后: 游标刚创建完之后,关联位置在第一行之前的。 在抓取了一些移动行之后,关联位置在检索到的最后一行上。 如果FETCH抓取完了所有可用行,它就停在最后一行后面,或者在反向抓取的情况下是停在第一行前面。 FETCH ALL或FETCH BACKWARD ALL将总是把游标的关联位置放在最后一行或者在第一行前面。
  • 语法格式 FETCH [ direction { FROM | IN } ] cursor_name; 其中direction子句为可选参数。 1 2 3 4 5 6 7 8 91011121314 NEXT | PRIOR | FIRST | LAST | ABSOLUTE count | RELATIVE count | count | ALL | FORWARD | FORWARD count | FORWARD ALL | BACKWARD | BACKWARD count | BACKWARD ALL
  • 参数说明 statement 指定要分析的SQL语句。 ANALYZE boolean | ANALYSE boolean 显示实际运行时间和其他统计数据。 取值范围: TRUE(缺省值):显示实际运行时间和其他统计数据。 FALSE:不显示。 VERBOSE boolean 显示有关计划的额外信息。 取值范围: TRUE(缺省值):显示额外信息。 FALSE:不显示。 COSTS boolean 包括每个规划节点的估计总成本,以及估计的行数和每行的宽度。 取值范围: TRUE(缺省值):显示估计总成本和宽度。 FALSE:不显示。 CPU boolean 打印CPU的使用情况的信息。 取值范围: TRUE(缺省值):显示CPU的使用情况。 FALSE:不显示。 DETAIL boolean 打印DN上的信息。 取值范围: TRUE(缺省值):打印DN的信息。 FALSE:不打印。 NODES boolean 打印query执行的节点信息。 取值范围: TRUE(缺省值):打印执行的节点的信息。 FALSE:不打印。 NUM_NODES boolean 打印执行中的节点的个数信息。 取值范围: TRUE(缺省值):打印DN个数的信息。 FALSE:不打印。 BUFFERS boolean 包括缓冲区的使用情况的信息。 取值范围: TRUE:显示缓冲区的使用情况。 FALSE(缺省值):不显示。 TIMING boolean 包括实际的启动时间和花费在输出节点上的时间信息。 取值范围: TRUE(缺省值):显示启动时间和花费在输出节点上的时间信息。 FALSE:不显示。 PLAN boolean 是否将执行计划存储在plan_table中。当该选项开启时,会将执行计划存储在PLAN_TABLE中,不打印到当前屏幕,因此该选项为on时,不能与其他选项同时使用。 取值范围: TRUE(缺省值):将执行计划存储在plan_table中,不打印到当前屏幕。执行成功返回EXPLAIN SUCCESS。 FALSE:不存储执行计划,将执行计划打印到当前屏幕。 FORMAT 指定输出格式。 取值范围:TEXT,XML,JSON和YAML。 默认值:TEXT。 PERFORMANCE 使用此选项时,即打印执行中的所有相关信息。
  • 功能描述 显示SQL语句的执行计划。 执行计划将显示SQL语句所引用的表会采用什么样的扫描方式,如:简单的顺序扫描、索引扫描等。如果引用了多个表,执行计划还会显示用到的JOIN算法。 执行计划的最关键的部分是语句的预计执行开销,这是计划生成器估算执行该语句将花费多长的时间。 若指定了ANALYZE选项,则该语句会被执行,然后根据实际的运行结果显示统计数据,包括每个计划节点内时间总开销(毫秒为单位)和实际返回的总行数。这对于判断计划生成器的估计是否接近现实非常有用。
  • 语法格式 显示SQL语句的执行计划,支持多种选项,对选项顺序无要求。 1 EXPLAIN [ ( option [, ...] ) ] statement; 其中选项option子句的语法为。 1 2 3 4 5 6 7 8 9101112 ANALYZE [ boolean ] | ANALYSE [ boolean ] | VERBOSE [ boolean ] | COSTS [ boolean ] | CPU [ boolean ] | DETAIL [ boolean ] | NODES [ boolean ] | NUM_NODES [ boolean ] | BUFFERS [ boolean ] | TIMING [ boolean ] | PLAN [ boolean ] | FORMAT { TEXT | XML | JSON | YAML } 显示SQL语句的执行计划,且要按顺序给出选项。 1 EXPLAIN { [ { ANALYZE | ANALYSE } ] [ VERBOSE ] | PERFORMANCE } statement;
  • 注意事项 当enable_nonsysadmin_execute_direct=off时,只有系统管理员和监控管理员才能执行EXECUTE DIRECT。 为了各个节点上数据的一致性,SQL语句仅支持SELECT,不允许执行事务语句、DDL、DML。 使用此类型语句在指定的DN执行stddev聚集计算时,返回结果集是以三元数组形式返回,如{3, 8, 30},表示count结果为3,sum结果为8,平方和为30。使用此类型语句在指定的DN执行AVG聚集计算时,返回结果集以二元组形式返回,如{4,2},表示count结果为4,sum结果为2。注意,当数据为列存时,调用avg函数结果未定义,请使用stddev_samp函数。 当指定多个节点时,不支持agg函数,当query中包含agg函数时,会返回“EXECUTE DIRECT on multinode not support agg functions.” 由于CN节点不存储用户表数据,不允许指定CN节点执行用户表上的SELECT查询。 不允许执行嵌套的EXECUTE DIRECT语句,即执行的SQL语句不能同样是EXECUTE DIRECT语句,此时可直接执行最内层EXECUTE DIRECT语句代替。 agg函数查询结果与直接在CN上查询不一致,会返回多个信息,不支持array_avg函数。
  • 示例 1 2 3 4 5 6 7 8 910111213141516171819202122232425 --查询当前集群的节点分布状态。postgres=# SELECT * FROM pgxc_node; node_name | node_type | node_port | node_host | node_port1 | node_host1 | hostis_primary | nodeis_primary | nodeis_preferred | node_id | sctp_port | control_port | sctp_port1 | control_port1 --------------+-----------+-----------+----------------+------------+----------------+----------------+----------------+------------------+-------------+-----------+--------------+------------+--------------- cn_5001 | C | 8050 | 10.180.155.74 | 8050 | 10.180.155.74 | t | f | f | 1120683504 | 0 | 0 | 0 | 0 cn_5003 | C | 8050 | 10.180.157.130 | 8050 | 10.180.157.130 | t | f | f | -125853378 | 0 | 0 | 0 | 0 dn_6001_6002 | D | 40050 | 10.180.155.74 | 45050 | 10.146.187.231 | t | f | f | 1644780306 | 40052 | 40052 | 45052 | 45052 dn_6003_6004 | D | 40050 | 10.146.187.231 | 45050 | 10.180.157.130 | t | f | f | -966646068 | 40052 | 40052 | 45052 | 45052 dn_6005_6006 | D | 40050 | 10.180.157.130 | 45050 | 10.180.155.74 | t | f | f | 868850011 | 40052 | 40052 | 45052 | 45052 cn_5002 | C | 8050 | localhost | 8050 | localhost | t | f | f | -1736975100 | 0 | 0 | 0 | 0(6 rows)--查询dn_6001_6002上tpcds.customer_address记录。postgres=# EXECUTE DIRECT ON(dn_6001_6002) 'select count(*) from tpcds.customer_address'; count ------- 16922(1 row)--查询tpcds.customer_address所有记录。postgres=# SELECT count(*) FROM tpcds.customer_address; count ------- 50000(1 row)
  • 参数说明 EXPLAIN中的PLAN选项表示需要将计划信息存储于PLAN_TABLE中,存储成功将返回“EXPLAIN SUCCESS”。 用户可通过STATEMENT_ID对查询设置标签,输入的标签信息也将存储于PLAN_TABLE中。 用户在执行EXPLAIN PLAN时,如果没有设置STATEMENT_ID,则默认为空值。同时,用户可输入的STATEMENT_ID最大长度为30个字节,超过长度将会产生报错。
  • 注意事项 EXPLAIN PLAN不支持在DN上执行。 对于执行错误的SQL语句无法进行计划信息的收集。 PLAN_TABLE中的数据是session级生命周期并且session隔离和用户隔离,用户只能看到当前session、当前用户的数据。 PLAN_TABLE无法与GDS外表进行关联查询。 对于不能下推的查询,无法收集到具体的object信息,object只能收集到REMOTE_QUERY或CTE等信息。详见示例 2。
  • 示例 1 2 3 4 5 6 7 8 910111213141516171819202122 --创建表reason。postgres=# CREATE TABLE tpcds.reason ( CD_DEMO_SK INTEGER NOT NULL, CD_GENDER character(16) , CD_MARITAL_STATUS character(100));--插入数据。postgres=# INSERT INTO tpcds.reason VALUES(51, 'AAAAAAAADDAAAAAA', 'reason 51');--创建表reason_t1。postgres=# CREATE TABLE tpcds.reason_t1 AS TABLE tpcds.reason;--为一个INSERT语句创建一个预备语句然后执行它。postgres=# PREPARE insert_reason(integer,character(16),character(100)) AS INSERT INTO tpcds.reason_t1 VALUES($1,$2,$3);postgres=# EXECUTE insert_reason(52, 'AAAAAAAADDAAAAAA', 'reason 52'); --删除表reason和reason_t1。postgres=# DROP TABLE tpcds.reason;postgres=# DROP TABLE tpcds.reason_t1;
  • 注意事项 须使用CASCADE级联删除依赖用户的对象(除数据库外)。当删除用户的级联对象时,如果级联对象处于锁定状态,则此级联对象无法被删除,直到对象被解锁或锁定级联对象的进程被杀死。 在GaussDB中,存在一个配置参数enable_kill_query,此参数在配置文件postgresql.conf中。此参数影响级联删除用户对象的行为: 当参数enable_kill_query为on ,且使用CASCADE模式删除用户时,会自动kill锁定用户级联对象的进程,并删除用户。 当参数enable_kill_query为off,且使用CASCADE模式删除用户时,会等待锁定级联对象的进程结束之后再删除用户。 在数据库中删除用户时,如果依赖用户的对象在其他数据库中或者依赖用户的对象是其他数据库,请用户先手动删除其他数据库中的依赖对象或直接删除依赖数据库,再删除用户。即drop user不支持跨数据库进行级联删除。 在多租户场景下,删除组用户时,业务用户也会同时被删除,如果指定CASCADE级联删除,那么删除业务用户时同时也指定CASCADE。如果在删除某个用户失败时,会报错,同时其他用户也无法成功删除。 如果用户下存在创建GDS外表时指定的错误表,则无法通过drop user指定cascade关键字直接删除用户。 如果该用户被DATA SOURCE对象依赖时,无法直接级联删除该用户,需要手动删除对应的DATA SOURCE对象之后再删除该用户。
  • 参数说明 IF EXISTS 如果指定的用户不存在,发出一个notice而不是抛出一个错误。 user_name 待删除的用户名。 取值范围:已存在的用户名。 CASCADE | RESTRICT CASCADE:级联删除依赖用户的对象。 RESTRICT:如果用户还有任何依赖的对象,则拒绝删除该用户(缺省行为)。 在GaussDB中,存在一个配置参数enable_kill_query,此参数在配置文件postgresql.conf中。此参数影响级联删除用户对象的行为: 当参数enable_kill_query为on ,且使用CASCADE模式删除用户时,会自动kill锁定用户级联对象的进程,并删除用户。 当参数enable_kill_query为off,且使用CASCADE模式删除用户时,会等待锁定级联对象的进程结束之后再删除用户。
  • 语法格式 创建表。 1 2 3 4 5 6 7 8 910111213141516 CREATE [ [ GLOBAL | LOCAL ] [ TEMPORARY | TEMP ] | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name ({ column_name data_type [ compress_mode ] [ COLLATE collation ] [ column_constraint [ ... ] ] | table_constraint | LIKE source_table [ like_option [...] ] } [, ... ]) [ WITH ( {storage_parameter = value} [, ... ] ) ] [ ON COMMIT { PRESERVE ROWS | DELETE ROWS } ] [ COMPRESS | NOCOMPRESS ] [ TABLESPACE tablespace_name ] [ DISTRIBUTE BY { REPLICATION | HASH ( column_name [, ...] ) | RANGE ( column_name [, ...] ) { SLICE REFERENCES tablename | ( slice_less_than_item [, ...] ) | ( slice_start_end_item [, ...] ) } | LIST ( column_name [, ...] ) { SLICE REFERENCES tablename | ( slice_values_item [, ...] ) } } ] [ TO { GROUP groupname | NODE ( nodename [, ... ] ) } ]; 其中列约束column_constraint为: 123456789 [ CONSTRAINT constraint_name ]{ NOT NULL | NULL | CHECK ( expression ) | DEFAULT default_expr | UNIQUE [ index_parameters ] | PRIMARY KEY [ index_parameters ] | ENCRYPTED WITH ( COLUMN_ENCRYPTION_KEY = column_encryption_key, ENCRYPTION_TYPE = encryption_type_value)}[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] 其中列的压缩可选项compress_mode为: 1 { DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS } 其中表约束table_constraint为: 123456 [ CONSTRAINT constraint_name ]{ CHECK ( expression ) | UNIQUE ( column_name [, ... ] ) [ index_parameters ] | PRIMARY KEY ( column_name [, ... ] ) [ index_parameters ] | PARTIAL CLUSTER KEY ( column_name [, ... ] ) }[ DEFERRABLE | NOT DEFERRABLE ][ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] 其中like选项like_option为: 1 { INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | PARTITION | RELOPTIONS | DISTRIBUTION | ALL } 其中RANGE分布规则 slice_less_than_item为: SLICE slice_name VALUES LESS THAN ({ literal | MAXVALUE } [, ...]) [ DATANODE dn_name ] slice_start_end_item为: SLICE slice_name_prefix { { START ( literal ) END ( literal ) EVERY ( literal ) } | { START ( literal ) END ( { literal | MAXVALUE } ) } | { START ( literal ) } | { END ( { literal | MAXVALUE } ) } } 其中LIST分布规则slice_values_item为: SLICE slice_name VALUES (list_values_item) [DATANODE dn_name] list_values_item为: { DEFAULT | { partition_values_list [, ...] } } partition_values_list为: { (literal [, ...]) } 其中索引参数index_parameters为: 12 [ WITH ( {storage_parameter = value} [, ... ] ) ][ USING INDEX TABLESPACE tablespace_name ]
  • 优化建议 UNLOGGED UNLOGGED表和表上的索引因为数据写入时不通过WAL日志机制,写入速度远高于普通表。因此,可以用于缓冲存储复杂查询的中间结果集,增强复杂查询的性能。 UNLOGGED表无主备机制,在系统故障或异常断点等情况下,会有数据丢失风险,因此,不可用来存储基础数据。 TEMPORARY | TEMP 临时表只在当前会话可见,会话结束后会自动删除。 除了当前CN外,其他CN对于该临时表不可见。 LIKE 新表自动从这个表中继承所有字段名及其数据类型和非空约束,新表与源表之间在创建动作完毕之后是完全无关的。 LIKE INCLUDING DEFAULTS 源表上的字段缺省表达式只有在指定INCLUDING DEFAULTS时,才会复制到新表中。缺省是不包含缺省表达式的,即新表中的所有字段的缺省值都是NULL。 LIKE INCLUDING CONSTRAINTS 源表上的CHECK约束仅在指定INCLUDING CONSTRAINTS时,会复制到新表中,而其他类型的约束永远不会复制到新表中。非空约束总是复制到新表中。此规则同时适用于表约束和列约束。 LIKE INCLUDING INDEXES 如果指定了INCLUDING INDEXES,则源表上的索引也将在新表上创建,默认不建立索引。 LIKE INCLUDING STORAGE 如果指定了INCLUDING STORAGE,则复制列的STORAGE设置会复制到新表中,默认情况下不包含STORAGE设置。 LIKE INCLUDING COMMENTS 如果指定了INCLUDING COMMENTS,则源表列、约束和索引的注释会复制到新表中。默认情况下,不复制源表的注释。 LIKE INCLUDING PARTITION 如果指定了INCLUDING PARTITION,则源表的分区定义会复制到新表中,同时新表将不能再使用PARTITION BY子句。默认情况下,不拷贝源表的分区定义。 LIKE INCLUDING RELOPTIONS 如果指定了INCLUDING RELOPTIONS,则源表的存储参数(即源表的WITH子句)会复制到新表中。默认情况下,不复制源表的存储参数。 LIKE INCLUDING DISTRIBUTION 如果指定了INCLUDING DISTRIBUTION,则源表的分布信息会复制到新表中,包括分布类型和分布列,同时新表将不能再使用DISTRIBUTE BY子句。默认情况下,不拷贝源表的分布信息。 LIKE INCLUDING ALL INCLUDING ALL包含了INCLUDING DEFAULTS、INCLUDING CONSTRAINTS、INCLUDING INDEXES、INCLUDING STORAGE、INCLUDING COMMENTS、INCLUDING PARTITION、INCLUDING RELOPTIONS和INCLUDING DISTRIBUTION的内容。 ORIENTATION ROW 创建行存表,行存储适合于OLTP业务,此类型的表上交互事务比较多,一次交互会涉及表中的多个列,用行存查询效率较高。 ORIENTATION COLUMN 创建列存表,列存储适合于数据仓库业务,此类型的表上会做大量的汇聚计算,且涉及的列操作较少。 DISTRIBUTE BY 事实表或者数据量较大的维度表建议创建为分布表。对指定的列进行Hash,通过映射,把数据分布到指定DN。语法为:distribute by hash(column_name)。 数据量较小的维度表建议创建为复制表。表的每条记录存在所有数据节点(DN)中,即每个数据节点都有完整的表数据。语法为: distribute by replication。
  • 注意事项 列存表支持的数据类型请参考列存表支持的数据类型。 创建列存的数量建议不超过1000个。 表中的主键约束和唯一约束必须包含分布列。 分布列不支持更新(UPDATE)操作。 如果在建表过程中数据库系统发生故障,系统恢复后可能无法自动清除之前已创建的、大小为0的磁盘文件。此种情况出现概率小,不影响数据库系统的正常运行。 列存表的表级约束只支持PARTIAL CLUSTER KEY,不支持主外键等表级约束。 列存表的字段约束只支持NULL、NOT NULL和DEFAULT常量值。 列存表支持delta表,受参数enable_delta_store控制是否开启,受参数deltarow_threshold控制进入delta表的阀值。 使用JDBC时,支持通过PrepareStatement对DEFAUTL值进行参数化设置。 行存表的表级约束不支持外键。 依据并发控制策略,drop table if exist和create if exist操作相同的表并发场景时,有一个会回滚。
  • 参数说明 IF EXISTS 如果指定的触发器不存在,则发出一个notice而不是抛出一个错误。 trigger_name 要删除的触发器名称。 取值范围:已存在的触发器。 table_name 要删除的触发器所在的表名称。 取值范围:已存在的含触发器的表。 CASCADE | RESTRICT CASCADE:级联删除依赖此触发器的对象。 RESTRICT:如果有依赖对象存在,则拒绝删除此触发器。此选项为缺省值。
  • 参数说明 IF EXISTS 如果指定的全文检索词典不存在,那么发出一个Notice而不是报错。 name 要删除的词典名称(可指定模式名,否则默认在当前模式下)。 取值范围:已存在的词典名。 CASCADE 自动删除依赖于该词典的对象,并依次删除依赖于这些对象的所有对象。 如果存在任何一个使用该词典的文本搜索配置,此DROP命令将不会成功。可添加CASCADE以删除引用该词典的所有文本搜索配置以及词典。 RESTRICT 如果任何对象依赖词典,则拒绝删除该词典。这是缺省值。
  • 注意事项 只有表空间所有者或者被授予了表空间DROP权限的用户有权限执行DROP TABLESPACE命令,系统管理员默认拥有此权限。 在删除一个表空间之前,表空间里面不能有任何数据库对象,否则会报错。 DROP TABLESPACE不支持回滚,因此,不能出现在事务块内部。 执行DROP TABLESPACE操作时,如果有另外的会话执行\db查询操作,可能会由于tablespace事务的原因导致查询失败,请重新执行\db查询操作。 如果执行DROP TABLESPACE失败,需要再次执行一次DROP TABLESPACE IF EXISTS。
  • 示例 12345678 --创建数据表all_datapostgres=# CREATE TABLE all_data(id int, role varchar(100), data varchar(100));--创建行访问控制策略postgres=# CREATE ROW LEVEL SECURITY POLICY all_data_rls ON all_data USING(role = CURRENT_USER);--删除行访问控制策略postgres=# DROP ROW LEVEL SECURITY POLICY all_data_rls ON all_data;
  • 参数说明 IF EXISTS 如果指定的模式不存在,发出一个notice而不是抛出一个错误。 schema_name 模式的名称。 取值范围:已存在模式名。 CASCADE | RESTRICT CASCADE:自动删除包含在模式中的对象。 RESTRICT:如果模式包含任何对象,则删除失败(缺省行为)。 不要随意删除pg_temp或pg_toast_temp开头的模式,这些模式是系统内部使用的,如果删除,可能导致无法预知的结果。 无法删除当前模式。如果要删除当前模式,须切换到其他模式下。
  • 参数说明 groupname 要删除的节点组名。 取值范围:已存在的节点组。 DISTRIBUTE FROM src_group_name 如果被删除的节点组是从src_group_name逻辑集群节点组重分布过来的,删除该节点组需要指定src_group_name,以便将重分布后的节点分布信息同步到src_group_name指定的逻辑集群节点组。该语句仅仅用于扩容重分布,用户不建议直接使用,以免导致数据分布错误和逻辑集群不可用。
  • 参数说明 CONCURRENTLY 以不加锁的方式删除索引。删除索引时,一般会阻塞其他语句对该索引所依赖表的访问。加此关键字,可实现删除过程中不做阻塞。 此选项只能指定一个索引的名称, 并且CASCADE选项不支持。 普通DROP INDEX命令可以在事务内执行,但是DROP INDEX CONCURRENTLY不可以在事务内执行。 IF EXISTS 如果指定的索引不存在,则发出一个notice而不是抛出一个错误。 index_name 要删除的索引名。 取值范围:已存在的索引。 CASCADE | RESTRICT CASCADE:表示允许级联删除依赖于该索引的对象。 RESTRICT(缺省值):表示有依赖与此索引的对象存在,则该索引无法被删除。
  • 语法格式 1 2 3 4 5 6 7 8 910111213141516 CREATE TABLE [ IF NOT EXISTS ] partition_table_name( [ { column_name data_type [ COLLATE collation ] [ column_constraint [ ... ] ] | table_constraint | LIKE source_table [ like_option [...] ] }[, ... ]] ) [ WITH ( {storage_parameter = value} [, ... ] ) ] [ COMPRESS | NOCOMPRESS ] [ TABLESPACE tablespace_name ] [ DISTRIBUTE BY { REPLICATION | { [ HASH ] ( column_name ) } } ] [ TO { GROUP groupname | NODE ( nodename [, ... ] ) } ] PARTITION BY { {RANGE (partition_key) ( partition_less_than_item [, ... ] )} | {RANGE (partition_key) ( partition_start_end_item [, ... ] )} } [ { ENABLE | DISABLE } ROW MOVEMENT ]; 列约束column_constraint: 12345678 [ CONSTRAINT constraint_name ]{ NOT NULL | NULL | CHECK ( expression ) | DEFAULT default_expr | UNIQUE [ index_parameters ] | PRIMARY KEY [ index_parameters ] }[ DEFERRABLE | NOT DEFERRABLE ][ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] 表约束table_constraint: [ CONSTRAINT constraint_name ]{ CHECK ( expression ) | UNIQUE ( column_name [, ... ] ) [ index_parameters ] | PRIMARY KEY ( column_name [, ... ] ) [ index_parameters ]}[ DEFERRABLE | NOT DEFERRABLE ][ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] like选项like_option: 1 { INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | RELOPTIONS | DISTRIBUTION | ALL } 索引存储参数index_parameters: 12 [ WITH ( {storage_parameter = value} [, ... ] ) ][ USING INDEX TABLESPACE tablespace_name ]
  • 参数说明 IF NOT EXISTS 如果已经存在相同名称的表,不会抛出一个错误,而会发出一个通知,告知表关系已存在。 partition_table_name 分区表的名称。 取值范围:字符串,要符合标识符的命名规范。 column_name 新表中要创建的字段名。 取值范围:字符串,要符合标识符的命名规范。 data_type 字段的数据类型。 COLLATE collation COLLATE子句指定列的排序规则(该列必须是可排列的数据类型)。如果没有指定,则使用默认的排序规则。 CONSTRAINT constraint_name 列约束或表约束的名称。可选的约束子句用于声明约束,新行或者更新的行必须满足这些约束才能成功插入或更新。排序规则可以使用“select * from pg_collation”命令从pg_collation系统表中查询,默认的排序规则为查询结果中以default开始的行。 定义约束有两种方法: 列约束:作为一个列定义的一部分,仅影响该列。 表约束:不和某个列绑在一起,可以作用于多个列。 LIKE source_table [ like_option ... ] LIKE子句声明一个表,新表自动从这个表里面继承所有字段名及其数据类型和非空约束。 和INHERITS不同,新表与原来的表之间在创建动作完毕之后是完全无关的。在源表做的任何修改都不会传播到新表中,并且也不可能在扫描源表的时候包含新表的数据。 字段缺省表达式只有在声明了INCLUDING DEFAULTS之后才会包含进来。缺省是不包含缺省表达式的,即新表中所有字段的缺省值都是NULL。 非空约束将总是复制到新表中,CHECK约束则仅在指定了INCLUDING CONSTRAINTS的时候才复制,而其他类型的约束则永远也不会被复制。此规则同时适用于表约束和列约束。 和INHERITS不同,被复制的列和约束并不使用相同的名称进行融合。如果明确的指定了相同的名称或者在另外一个LIKE子句中,将会报错。 如果指定了INCLUDING INDEXES,则源表上的索引也将在新表上创建,默认不建立索引。 如果指定了INCLUDING STORAGE,则拷贝列的STORAGE设置也将被拷贝,默认情况下不包含STORAGE设置。 如果指定了INCLUDING COMMENTS,则源表列、约束和索引的注释也会被拷贝过来。默认情况下,不拷贝源表的注释。 如果指定了INCLUDING RELOPTIONS,则源表的存储参数(即源表的WITH子句)也将拷贝至新表。默认情况下,不拷贝源表的存储参数。 如果指定了INCLUDING DISTRIBUTION,则新表将拷贝源表的分布信息,包括分布类型和分布列,同时新表将不能再使用DISTRIBUTE BY子句。默认情况下,不拷贝源表的分布信息。 INCLUDING ALL是INCLUDING DEFAULTS INCLUDING CONSTRAINTS INCLUDING INDEXES INCLUDING STORAGE INCLUDING COMMENTS INCLUDING RELOPTIONS INCLUDING DISTRIBUTION的简写形式。 WITH ( storage_parameter [= value] [, ... ] ) 这个子句为表或索引指定一个可选的存储参数。参数的详细描述如下所示: FILLFACTOR 一个表的填充因子(fillfactor)是一个介于10和100之间的百分数。100(完全填充)是默认值。如果指定了较小的填充因子,INSERT操作仅按照填充因子指定的百分率填充表页。每个页上的剩余空间将用于在该页上更新行,这就使得UPDATE有机会在同一页上放置同一条记录的新版本,这比把新版本放置在其他页上更有效。对于一个从不更新的表将填充因子设为100是最佳选择,但是对于频繁更新的表,选择较小的填充因子则更加合适。该参数对于列存表没有意义。 取值范围:10~100 ORIENTATION 决定了表的数据的存储方式。 取值范围: COLUMN:表的数据将以列式存储。 ROW(缺省值):表的数据将以行式存储。 orientation不支持修改。 COMPRESSION 列存表的有效值为LOW/MIDDLE/HIGH/YES/NO,压缩级别依次升高,默认值为LOW。 行存表不支持压缩。 MAX_BATCHROW 指定了在数据加载过程中一个存储单元可以容纳记录的最大数目。该参数只对列存表有效。 取值范围:10000~60000 PARTIAL_CLUSTER_ROWS 指定了在数据加载过程中进行将局部聚簇存储的记录数目。该参数只对列存表有效。 取值范围:其有效值为大于等于10万。此值是MAX_BATCHROW的倍数。 DELTAROW_THRESHOLD 预留参数。该参数只对列存表有效。 取值范围:0~9999 hashbucket 创建hash bucket存储。本参数仅支持行存表和行存range表。 取值范围:on/off 默认值:off 当前版本hashbucket表相关DDL操作性能受限,不建议频繁对hashbucket表进行DDL操作。 COMPRESS / NOCOMPRESS 创建一个新表时,需要在创建表语句中指定关键字COMPRESS,这样,当对该表进行批量插入时就会触发压缩特性。该特性会在页范围内扫描所有元组数据,生成字典、压缩元组数据并进行存储。指定关键字NOCOMPRESS则不对表进行压缩。 缺省值为NOCOMPRESS,即不对元组数据进行压缩。行存表不支持压缩。 TABLESPACE tablespace_name 指定新表将要在tablespace_name表空间内创建。如果没有声明,将使用默认表空间。 DISTRIBUTE BY 指定表如何在节点之间分布或者复制。 取值范围: REPLICATION:表的每一行存在所有数据节点( DN )中,即每个数据节点都有完整的表数据。 HASH (column_name ) :对指定的列进行Hash,通过映射,把数据分布到指定DN。 当指定DISTRIBUTE BY HASH (column_name)参数时,创建主键和唯一索引必须包含“ column_name”列。 当被参照表指定DISTRIBUTE BY HASH (column_name)参数时,参照表的外键必须包含“ column_name”列。 缺省值:HASH(column_name),column_name取表的主键列(如果有的话)或首个数据类型支持作为分布列的列。 column_name的数据类型必须是以下类型之一: INTEGER TYPES: TINYINT, SMALLINT, INT, BIGINT, NUMERIC/DECIMAL CHARACTER TYPES: CHAR, BPCHAR, VARCHAR, VARCHAR2, NVARCHAR2 DATA/TIME TYPES: DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ, INTERVAL, SMALLDATETIME TO { GROUP groupname | NODE ( nodename [, ... ] ) } TO GROUP指定创建表所在的Node Group,目前不支持hdfs表使用。TO NODE主要供内部扩容工具使用,一般用户不应该使用。 PARTITION BY RANGE(partition_key) 创建范围分区。partition_key为分区键的名称。 (1)对于从句是VALUES LESS THAN的语法格式: 对于从句是VALUE LESS THAN的语法格式,范围分区策略的分区键最多支持4列。 该情形下,分区键支持的数据类型为:SMALLINT、INTEGER、BIGINT、DECIMAL、NUMERIC、REAL、DOUBLE PRECISION、CHARACTER VARYING(n)、VARCHAR(n)、CHARACTER(n)、CHAR(n)、CHARACTER、CHAR、TEXT、NVARCHAR2、NAME、TIMESTAMP[(p)] [WITHOUT TIME ZONE]、TIMESTAMP[(p)] [WITH TIME ZONE]、DATE。 (2)对于从句是START END的语法格式: 对于从句是START END的语法格式,范围分区策略的分区键仅支持1列。 该情形下,分区键支持的数据类型为:SMALLINT、INTEGER、BIGINT、DECIMAL、NUMERIC、REAL、DOUBLE PRECISION、TIMESTAMP[(p)] [WITHOUT TIME ZONE]、TIMESTAMP[(p)] [WITH TIME ZONE]、DATE。 PARTITION partition_name VALUES LESS THAN ( { partition_value | MAXVALUE } ) 指定各分区的信息。partition_name为范围分区的名称。partition_value为范围分区的上边界,取值依赖于partition_key的类型。MAXVALUE表示分区的上边界,它通常用于设置最后一个范围分区的上边界。 每个分区都需要指定一个上边界。 分区上边界的类型应当和分区键的类型一致。 分区列表是按照分区上边界升序排列的,值较小的分区位于值较大的分区之前。 PARTITION partition_name {START (partition_value) END (partition_value) EVERY (interval_value)} | {START (partition_value) END (partition_value|MAXVALUE)} | {START(partition_value)} | {END (partition_value | MAXVALUE)} 指定各分区的信息,各参数意义如下: partition_name:范围分区的名称或名称前缀,除以下情形外(假定其中的partition_name是p1),均为分区的名称。 若该定义是START+END+EVERY从句,则语义上定义的分区的名称依次为p1_1, p1_2, ...。例如对于定义“PARTITION p1 START(1) END(4) EVERY(1)”,则生成的分区是:[1, 2), [2, 3) 和 [3, 4),名称依次为p1_1, p1_2和p1_3,即此处的p1是名称前缀。 若该定义是第一个分区定义,且该定义有START值,则范围(MINVALUE, START)将自动作为第一个实际分区,其名称为p1_0,然后该定义语义描述的分区名称依次为p1_1, p1_2, ...。例如对于完整定义“PARTITION p1 START(1), PARTITION p2 START(2)”,则生成的分区是:(MINVALUE, 1), [1, 2) 和 [2, MAXVALUE),其名称依次为p1_0, p1_1和p2,即此处p1是名称前缀,p2是分区名称。这里MINVALUE表示最小值。 partition_value:范围分区的端点值(起始或终点),取值依赖于partition_key的类型,不可是MAXVALUE。 interval_value:对[START,END) 表示的范围进行切分,interval_value是指定切分后每个分区的宽度,不可是MAXVALUE;如果(END-START)值不能整除以EVERY值,则仅最后一个分区的宽度小于EVERY值。 MAXVALUE:表示最大值,它通常用于设置最后一个范围分区的上边界。 在创建分区表若第一个分区定义含START值,则范围(MINVALUE,START)将自动作为实际的第一个分区。 START END语法需要遵循以下限制: 每个partition_start_end_item中的START值(如果有的话,下同)必须小于其END值; 相邻的两个partition_start_end_item,第一个的END值必须等于第二个的START值; 每个partition_start_end_item中的EVERY值必须是正向递增的,且必须小于(END-START)值; 每个分区包含起始值,不包含终点值,即形如:[起始值,终点值),起始值是MINVALUE时则不包含; 一个partition_start_end_item创建的每个分区所属的TABLESPACE一样; partition_name作为分区名称前缀时,其长度不要超过57字节,超过时自动截断; 在创建、修改分区表时请注意分区表的分区总数不可超过最大限制(32767); 在创建分区表时START END与LESS THAN语法不可混合使用。 即使创建分区表时使用START END语法,备份(gs_dump)出的SQL语句也是VALUES LESS THAN语法格式。 { ENABLE | DISABLE } ROW MOVEMENT 行迁移开关。 如果进行UPDATE操作时,更新了元组在分区键上的值,造成了该元组所在分区发生变化,就会根据该开关给出报错信息,或者进行元组在分区间的转移。 取值范围: ENABLE:行迁移开关打开。 DISABLE(缺省值):行迁移开关关闭。
  • 功能描述 创建分区表。分区表是把逻辑上的一张表根据某种方案分成几张物理块进行存储,这张逻辑上的表称之为分区表,物理块称之为分区。分区表是一张逻辑表,不存储数据,数据实际是存储在分区上的。 常见的分区方案有范围分区(Range Partitioning)、哈希分区(Hash Partitioning)、列表分区(List Partitioning)、数值分区(Value Partition)等。目前行存表和列存表仅支持范围分区。 范围分区是根据表的一列或者多列,将要插入表的记录分为若干个范围,这些范围在不同的分区里没有重叠。为每个范围创建一个分区,用来存储相应的数据。 范围分区的分区策略是指记录插入分区的方式。目前范围分区仅支持范围分区策略。 范围分区策略:根据分区键值将记录映射到已创建的某个分区上,如果可以映射到已创建的某一分区上,则把记录插入到对应的分区上,否则给出报错和提示信息。这是最常用的分区策略。 分区可以提供若干好处: 某些类型的查询性能可以得到极大提升。特别是表中访问率较高的行位于一个单独分区或少数几个分区上的情况下。分区可以减少数据的搜索空间,提高数据访问效率。 当查询或更新一个分区的大部分记录时,连续扫描那个分区而不是访问整个表可以获得巨大的性能提升。 如果需要大量加载或者删除的记录位于单独的分区上,则可以通过直接读取或删除那个分区以获得巨大的性能提升,同时还可以避免由于大量DELETE导致的VACUUM超载。
  • 参数说明 IF EXISTS IF EXISTS表示,如果函数存在则执行删除操作,函数不存在也不会报错,只是发出一个notice。 function_name 要删除的函数名称。 取值范围:已存在的函数名。 argmode 函数参数的模式。 argname 函数参数的名称。 argtype 函数参数的类型 CASCADE | RESTRICT CASCADE:级联删除依赖于函数的对象(比如操作符) 。 RESTRICT:如果有任何依赖对象存在,则拒绝删除该函数(缺省行为)。
共100000条