华为云用户手册

  • 功能描述 检查点(CHECKPOINT)是一个事务日志中的点,所有数据文件都在该点被更新以反映日志中的信息,所有数据文件都将被刷新到磁盘。 设置事务日志检查点。预写式日志(WAL)缺省时在事务日志中每隔一段时间放置一个检查点。可以使用gs_guc命令设置相关运行时参数(checkpoint_segments, checkpoint_timeout和incremental_checkpoint_timeout)来调整这个原子化检查点的间隔。
  • 接口介绍 高级功能包DBE_UTILITY支持的所有接口请参见表1。 表1 DBE_UTILITY 接口名称 描述 DBE_UTILITY.FORMAT_ERROR_BACKTRACE 输出存储过程异常的调用堆栈。 DBE_UTILITY.FORMAT_ERROR_STACK 输出存储过程异常的具体信息。 DBE_UTILITY.FORMAT_CALL_STACK 输出存储过程的调用堆栈。 DBE_UTILITY.GET_TIME 输出当前时间,一般用于做差得到执行时长。 DBE_UTILITY.CANONICALIZE 用于给表名字符串做规范。 DBE_UTILITY.COMMA_TO_TABLE 将用逗号隔开的名字列表的字符串转换为PL/SQL表名列表。 DBE_UTILITY.DB_VERSION 返回数据库的版本号和兼容性版本号。 DBE_UTILITY.EXEC_DDL_STATEMENT 用于执行用户输入的DDL语句。 DBE_UTILITY.EXPAND_SQL_TEXT_PROC 用于展开SQL查询的视图。 DBE_UTILITY.GET_CPU_TIME 返回当前CPU处理时间的测量值。 DBE_UTILITY.GET_ENDIANNESS 用于获取数据库所在平台字节序的大小端信息。 DBE_UTILITY.GET_HASH_VALUE 返回一个给定字符串的hash值。 DBE_UTILITY.GET_SQL_HASH 输出一个给定字符串的hash值,该存储过程在不打开proc_outparam_override时使用。 DBE_UTILITY.IS_BIT_SET 用于检查参数n是否存在于r。 DBE_UTILITY.IS_CLUSTER_DATABASE 用于判断当前数据库是否在数据库集群模式下运行。 DBE_UTILITY.NAME_RESOLVE 解析给定的对象名称,包括同义词翻译和必要的授权检查。 DBE_UTILITY.NAME_TOKENIZE 用于解析a [. b [. c ]][@ dblink ]形式的名字。 DBE_UTILITY.OLD_CURRENT_SCHEMA 返回当前用户环境下的数据库模式名称。 DBE_UTILITY.OLD_CURRENT_USER 返回当前用户的名称。 DBE_UTILITY.TABLE_TO_COMMA 将PL/SQL中的表名转换为用逗号隔开的名字列表的字符串。 DBE_UTILITY.GET_SQL_HASH_FUNC 功能同DBE_UTILITY.GET_SQL_HASH,该函数在打开proc_outparam_override时使用。 DBE_UTILITY.EXPAND_SQL_TEXT 内部函数,不建议用户使用。 DBE_UTILITY.CANONICALIZE_RET 内部函数,不建议用户使用。 DBE_UTILITY.COMMA_TO_TABLE_FUN 内部函数,不建议用户使用。 DBE_UTILITY.COMPILE_SCHEMA 内部函数,不建议用户使用,已废弃。 DBE_UTILITY.NAME_SEPARATE 内部函数,不建议用户使用。 DBE_UTILITY.NAME_TOKENIZE_FUNC 内部函数,不建议用户使用。 DBE_UTILITY.NAME_TOKENIZE_LOWER 内部函数,不建议用户使用。 DBE_UTILITY.NAME_TOKENIZE_LOWER_FUNC 内部函数,不建议用户使用。 DBE_UTILITY.PRIVILEGE_CHECK 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_CLASS_WITH_NSPOID_ONAME_TYPE 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_OBJECTS 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_OBJECTS_SYNONYM_FILL_SECHEMA 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_PROCEDURE_WITH_NSPOID_ONAME 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_SYNONM_WITH_NSPOID_ONAME 内部函数,不建议用户使用。 DBE_UTILITY.TABLE_TO_COMMA_FUNC 内部函数,不建议用户使用。 DBE_UTILITY.USER_NAME 内部函数,不建议用户使用。 DBE_UTILITY.FORMAT_ERROR_BACKTRACE 存储过程FORMAT_ERROR_BACKTRACE返回在执行过程中出现错误时,出现错误位置的调用堆栈。DBE_UTILITY.FORMAT_ERROR_BACKTRACE函数原型为: 1 2 DBE_UTILITY.FORMAT_ERROR_BACKTRACE() RETURN TEXT; DBE_UTILITY.FORMAT_ERROR_STACK 存储过程FORMAT_ERROR_STACK返回在执行过程中出现错误时,出现错误位置的具体信息。DBE_UTILITY.FORMAT_ERROR_STACK函数原型为: 1 2 DBE_UTILITY.FORMAT_ERROR_STACK() RETURN TEXT; DBE_UTILITY.FORMAT_CALL_STACK 存储过程FORMAT_CALL_STACK设置输出函数调用堆栈。DBE_UTILITY.FORMAT_CALL_STACK函数原型为: 1 2 DBE_UTILITY.FORMAT_CALL_STACK() RETURN TEXT; DBE_UTILITY.GET_TIME 存储过程GET_TIME设置输出时间,通常用于做差,单独的返回值没有意义。DBE_UTILITY.GET_TIME函数原型为: 1 2 DBE_UTILITY.GET_TIME() RETURN BIGINT;
  • 分区表统计信息函数 gs_stat_get_partition_stats(oid) 描述:获取特定分区的统计信息。 返回值类型:record。 gs_stat_get_xact_partition_stats(oid) 描述:获取特定分区的事务中统计信息。 返回值类型:record。 gs_stat_get_all_partitions_stats() 描述:获取所有分区的统计信息。 返回值类型:setof record。 gs_stat_get_xact_all_partitions_stats() 描述:获取所有分区的事务中统计信息。 返回值类型:setof record。 gs_statio_get_all_partitions_stats() 描述:获取所有分区的I/O统计信息。 返回值类型:setof record。 上述五个函数示例: 运行时统计信息上报是异步的,且基于UDP协议,后台线程处理可能存在延迟和丢包,此处示例预期仅供参考。 事务外统计信息查询: gaussdb=# CREATE TABLE part_tab1 gaussdb-# ( gaussdb(# a int, b int gaussdb(# ) gaussdb-# PARTITION BY RANGE(b) gaussdb-# ( gaussdb(# PARTITION P1 VALUES LESS THAN(10), gaussdb(# PARTITION P2 VALUES LESS THAN(20), gaussdb(# PARTITION P3 VALUES LESS THAN(MAXVALUE) gaussdb(# ); CREATE TABLE gaussdb=# CREATE TABLE subpart_tab1 gaussdb-# ( gaussdb(# month_code VARCHAR2 ( 30 ) NOT NULL , gaussdb(# dept_code VARCHAR2 ( 30 ) NOT NULL , gaussdb(# user_no VARCHAR2 ( 30 ) NOT NULL , gaussdb(# sales_amt int gaussdb(# ) gaussdb-# PARTITION BY RANGE (month_code) SUBPARTITION BY RANGE (dept_code) gaussdb-# ( gaussdb(# PARTITION p_201901 VALUES LESS THAN( '201903' ) gaussdb(# ( gaussdb(# SUBPARTITION p_201901_a VALUES LESS THAN( '2' ), gaussdb(# SUBPARTITION p_201901_b VALUES LESS THAN( '3' ) gaussdb(# ), gaussdb(# PARTITION p_201902 VALUES LESS THAN( '201904' ) gaussdb(# ( gaussdb(# SUBPARTITION p_201902_a VALUES LESS THAN( '2' ), gaussdb(# SUBPARTITION p_201902_b VALUES LESS THAN( '3' ) gaussdb(# ) gaussdb(# ); CREATE TABLE gaussdb=# CREATE INDEX index_part_tab1 ON part_tab1(b) LOCAL gaussdb-# ( gaussdb(# PARTITION b_index1, gaussdb(# PARTITION b_index2, gaussdb(# PARTITION b_index3 gaussdb(# ); CREATE INDEX gaussdb=# CREATE INDEX idx_user_no ON subpart_tab1(user_no) LOCAL; CREATE INDEX gaussdb=# INSERT INTO part_tab1 VALUES(1, 1); INSERT 0 1 gaussdb=# INSERT INTO part_tab1 VALUES(1, 11); INSERT 0 1 gaussdb=# INSERT INTO part_tab1 VALUES(1, 21); INSERT 0 1 gaussdb=# UPDATE part_tab1 SET a = 2 WHERE b = 1; UPDATE 1 gaussdb=# UPDATE part_tab1 SET a = 3 WHERE b = 11; UPDATE 1 gaussdb=# UPDATE /*+ indexscan(part_tab1) */ part_tab1 SET a = 4 WHERE b = 21; UPDATE 1 gaussdb=# DELETE FROM part_tab1; DELETE 3 gaussdb=# ANALYZE part_tab1; ANALYZE gaussdb=# VACUUM part_tab1; VACUUM gaussdb=# INSERT INTO subpart_tab1 VALUES('201902', '1', '1', 1); INSERT 0 1 gaussdb=# INSERT INTO subpart_tab1 VALUES('201902', '2', '2', 1); INSERT 0 1 gaussdb=# INSERT INTO subpart_tab1 VALUES('201903', '1', '3', 1); INSERT 0 1 gaussdb=# INSERT INTO subpart_tab1 VALUES('201903', '2', '4', 1); INSERT 0 1 gaussdb=# UPDATE subpart_tab1 SET sales_amt = 2 WHERE user_no='1'; UPDATE 1 gaussdb=# UPDATE subpart_tab1 SET sales_amt = 3 WHERE user_no='2'; UPDATE 1 gaussdb=# UPDATE subpart_tab1 SET sales_amt = 4 WHERE user_no='3'; UPDATE 1 gaussdb=# UPDATE /*+ indexscan(subpart_tab1) */ subpart_tab1 SET sales_amt = 5 WHERE user_no='4'; UPDATE 1 gaussdb=# DELETE FROM subpart_tab1; DELETE 4 gaussdb=# ANALYZE subpart_tab1; ANALYZE gaussdb=# VACUUM subpart_tab1; VACUUM gaussdb=# SELECT * FROM gs_stat_all_partitions; partition_oid | schemaname | relname | partition_name | sub_partition_name | seq_scan | seq_tup_read | idx_scan | idx_tup_fetch | n_tup_ins | n_tup_upd | n_tup_del | n_tup_hot_upd | n_live_tup | n_dead_tup | last_vacuum | last_autovacuum | last_analyze | last_autoanalyze | vacuum_count | autovacuum_count | analyze_count | autoanalyze_count ---------------+------------+--------------+----------------+--------------------+----------+--------------+----------+---------------+-----------+-----------+-----------+---------------+------------+ ------------+-------------------------------+------------------------+-------------------------------+------------------------+--------------+------------------+---------------+------------------- 16964 | public | subpart_tab1 | p_201902 | p_201902_b | 5 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:45.293965+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:44.688861+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 16963 | public | subpart_tab1 | p_201902 | p_201902_a | 5 | 1 | 4 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:45.291022+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:44.688843+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 16961 | public | subpart_tab1 | p_201901 | p_201901_b | 5 | 1 | 4 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:45.288037+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:44.688829+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 16960 | public | subpart_tab1 | p_201901 | p_201901_a | 5 | 1 | 4 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:45.285311+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:44.688802+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 16954 | public | part_tab1 | p3 | | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:29.490636+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:28.540115+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 16953 | public | part_tab1 | p2 | | 4 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:29.487914+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:28.540098+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 16952 | public | part_tab1 | p1 | | 5 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:29.48536+08 | 2000-01-01 08:00:00+08 | 2023-05-15 20:36:28.540071+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 (7 rows) gaussdb=# SELECT * FROM gs_statio_all_partitions; partition_oid | schemaname | relname | partition_name | sub_partition_name | heap_blks_read | heap_blks_hit | idx_blks_read | idx_blks_hit | toast_blks_read | toast_blks_hit | tidx_blks_read | t idx_blks_hit ---------------+------------+--------------+----------------+--------------------+----------------+---------------+---------------+--------------+-----------------+----------------+----------------+-- ------------- 16964 | public | subpart_tab1 | p_201902 | p_201902_b | 4 | 8 | 2 | 21 | | | | 16963 | public | subpart_tab1 | p_201902 | p_201902_a | 4 | 8 | 2 | 21 | | | | 16961 | public | subpart_tab1 | p_201901 | p_201901_b | 4 | 8 | 2 | 21 | | | | 16960 | public | subpart_tab1 | p_201901 | p_201901_a | 4 | 8 | 2 | 21 | | | | 16954 | public | part_tab1 | p3 | | 4 | 8 | 2 | 15 | | | | 16953 | public | part_tab1 | p2 | | 4 | 8 | 2 | 15 | | | | 16952 | public | part_tab1 | p1 | | 4 | 8 | 2 | 15 | | | | (7 rows) gaussdb=# SELECT * FROM gs_stat_get_partition_stats(16952); partition_oid | seq_scan | seq_tup_read | idx_scan | idx_tup_fetch | n_tup_ins | n_tup_upd | n_tup_del | n_tup_hot_upd | n_live_tup | n_dead_tup | last_vacuum | last_autovacuum | last_analyze | last_autoanalyze | vacuum_count | autovacuum_count | analyze_count | autoanalyze_count | last_data_changed | heap_blks_read | heap_blks_hit | idx_blks_re ad | idx_blks_hit | tup_fetch | block_fetch ---------------+----------+--------------+----------+---------------+-----------+-----------+-----------+---------------+------------+------------+------------------------------+---------------------- --+-------------------------------+------------------------+--------------+------------------+---------------+-------------------+------------------------+----------------+---------------+------------ ---+--------------+-----------+------------- 16952 | 5 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2023-05-15 20:36:29.48536+08 | 2000-01-01 08:00:00+0 8 | 2023-05-15 20:36:28.540071+08 | 2000-01-01 08:00:00+08 | 1 | 0 | 1 | 0 | 2000-01-01 08:00:00+08 | 4 | 8 | 2 | 21 | 0 | 12 (1 row) 事务内统计信息查询: gaussdb=# BEGIN; BEGIN gaussdb=# INSERT INTO part_tab1 VALUES(1, 1); INSERT 0 1 gaussdb=# INSERT INTO part_tab1 VALUES(1, 11); INSERT 0 1 gaussdb=# INSERT INTO part_tab1 VALUES(1, 21); INSERT 0 1 gaussdb=# UPDATE part_tab1 SET a = 2 WHERE b = 1; UPDATE 1 gaussdb=# UPDATE part_tab1 SET a = 3 WHERE b = 11; UPDATE 1 gaussdb=# UPDATE /*+ indexscan(part_tab1) */ part_tab1 SET a = 4 WHERE b = 21; UPDATE 1 gaussdb=# DELETE FROM part_tab1; DELETE 3 gaussdb=# INSERT INTO subpart_tab1 VALUES('201902', '1', '1', 1); INSERT 0 1 gaussdb=# INSERT INTO subpart_tab1 VALUES('201902', '2', '2', 1); INSERT 0 1 gaussdb=# INSERT INTO subpart_tab1 VALUES('201903', '1', '3', 1); INSERT 0 1 gaussdb=# INSERT INTO subpart_tab1 VALUES('201903', '2', '4', 1); INSERT 0 1 gaussdb=# UPDATE subpart_tab1 SET sales_amt = 2 WHERE user_no='1'; UPDATE 1 gaussdb=# UPDATE subpart_tab1 SET sales_amt = 3 WHERE user_no='2'; UPDATE 1 gaussdb=# UPDATE subpart_tab1 SET sales_amt = 4 WHERE user_no='3'; UPDATE 1 gaussdb=# UPDATE /*+ indexscan(subpart_tab1) */ subpart_tab1 SET sales_amt = 5 WHERE user_no='4'; UPDATE 1 gaussdb=# DELETE FROM subpart_tab1; DELETE 4 gaussdb=# SELECT * FROM gs_stat_xact_all_partitions; partition_oid | schemaname | relname | partition_name | sub_partition_name | seq_scan | seq_tup_read | idx_scan | idx_tup_fetch | n_tup_ins | n_tup_upd | n_tup_del | n_tup_hot_upd ---------------+------------+--------------+----------------+--------------------+----------+--------------+----------+---------------+-----------+-----------+-----------+--------------- 16964 | public | subpart_tab1 | p_201902 | p_201902_b | 4 | 4 | 1 | 2 | 1 | 1 | 1 | 1 16963 | public | subpart_tab1 | p_201902 | p_201902_a | 4 | 4 | 1 | 0 | 1 | 1 | 1 | 1 16961 | public | subpart_tab1 | p_201901 | p_201901_b | 4 | 4 | 1 | 0 | 1 | 1 | 1 | 1 16960 | public | subpart_tab1 | p_201901 | p_201901_a | 4 | 4 | 1 | 0 | 1 | 1 | 1 | 1 16954 | public | part_tab1 | p3 | | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 16953 | public | part_tab1 | p2 | | 3 | 2 | 0 | 0 | 1 | 1 | 1 | 1 16952 | public | part_tab1 | p1 | | 4 | 2 | 0 | 0 | 1 | 1 | 1 | 1 (7 rows) gaussdb=# SELECT * FROM gs_stat_get_xact_partition_stats(16952); partition_oid | seq_scan | seq_tup_read | idx_scan | idx_tup_fetch | n_tup_ins | n_tup_upd | n_tup_del | n_tup_hot_upd | tup_fetch ---------------+----------+--------------+----------+---------------+-----------+-----------+-----------+---------------+----------- 16952 | 4 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 0 (1 row) gs_stat_get_partition_analyze_count(oid) 描述:用户在该分区上启动分析的次数。 返回值类型:bigint。 gs_stat_get_partition_autoanalyze_count(oid) 描述:autovacuum守护线程在该分区上启动分析的次数。 返回值类型:bigint。 gs_stat_get_partition_autovacuum_count(oid) 描述:autovacuum守护线程在该分区上启动清理的次数。 返回值类型:bigint。 gs_stat_get_partition_last_analyze_time(oid) 描述:用户在该分区上最后一次手动启动分析或者autovacuum线程启动分析的时间。 返回值类型:timestamptz。 gs_stat_get_partition_last_autoanalyze_time(oid) 描述:autovacuum守护线程在该分区上最后一次启动分析的时间。 返回值类型:timestamptz。 gs_stat_get_partition_last_autovacuum_time(oid) 描述:autovacuum守护线程在该分区上最后一次启动清理的时间。 返回值类型:timestamptz。 gs_stat_get_partition_last_data_changed_time(oid) 描述:对于在分区上的修改insert/update/delete/truncate,在该表上最后一次操作的时间。当前暂不支持。 返回值类型:timestamptz。 gs_stat_get_partition_last_vacuum_time(oid) 描述:用户在该分区上最后一次手动启动清理或者autovacuum线程启动清理的时间。 返回值类型:timestamptz。 gs_stat_get_partition_numscans(oid) 描述:分区顺序扫描读取的行数目。 返回值类型:bigint。 gs_stat_get_partition_tuples_returned(oid) 描述:分区顺序扫描读取的行数目。 返回值类型:bigint。 gs_stat_get_partition_tuples_fetched(oid) 描述:分区位图扫描抓取的行数目。 返回值类型:bigint gs_stat_get_partition_vacuum_count(oid) 描述:用户在该分区上启动清理的次数。 返回值类型:bigint。 gs_stat_get_xact_partition_tuples_fetched(oid) 描述:事务中扫描的tuple行数。 返回值类型:bigint。 gs_stat_get_xact_partition_numscans(oid) 描述:当前事务中分区执行的顺序扫描次数。 返回值类型:bigint。 gs_stat_get_xact_partition_tuples_returned(oid) 描述:当前事务中分区通过顺序扫描读取的行数。 返回值类型:bigint。 gs_stat_get_partition_blocks_fetched(oid) 描述:分区的磁盘块抓取请求的数量。 返回值类型:bigint。 gs_stat_get_partition_blocks_hit(oid) 描述:在缓冲区中找到的分区的磁盘块请求数目。 返回值类型:bigint。 pg_stat_get_partition_tuples_inserted(oid) 描述:插入相应表分区中行的数量。 返回值类型:bigint。 pg_stat_get_partition_tuples_updated(oid) 描述:在相应表分区中已更新行的数量。 返回值类型:bigint。 pg_stat_get_partition_tuples_deleted(oid) 描述:从相应表分区中删除行的数量。 返回值类型:bigint。 pg_stat_get_partition_tuples_changed(oid) 描述:该表分区上一次analyze或autoanalyze之后插入、更新、删除行的总数量。 返回值类型:bigint。 pg_stat_get_partition_live_tuples(oid) 描述:分区表活行数。 返回值类型:bigint。 pg_stat_get_partition_dead_tuples(oid) 描述:分区表死行数。 返回值类型:bigint。 pg_stat_get_xact_partition_tuples_inserted(oid) 描述:表分区相关的活跃子事务中插入的tuple数。 返回值类型:bigint。 pg_stat_get_xact_partition_tuples_deleted(oid) 描述:表分区相关的活跃子事务中删除的tuple数。 返回值类型:bigint。 pg_stat_get_xact_partition_tuples_hot_updated(oid) 描述:表分区相关的活跃子事务中热更新的tuple数。 返回值类型:bigint。 pg_stat_get_xact_partition_tuples_updated(oid) 描述:表分区相关的活跃子事务中更新的tuple数。 返回值类型:bigint。 pg_stat_get_partition_tuples_hot_updated(oid) 描述:返回给定分区id的分区热更新元组数的统计。 参数:oid 返回值类型:bigint。 gs_wlm_respool_cpu_info() 描述:描述资源池的CPU资源限制和使用信息。 返回值类型:setof record。 名称 类型 描述 respool_name name 资源池名称。 control_group name cgroup名称。 cpu_affinity name CPU绑定core的数值。 cpu_usage integer 资源池的CPU使用率。 对于CN和DN混合部署的场景,CN和DN共享同一份CPU资源,因此CN和DN的cpu_usage显示相同,对于CN和DN独立部署场景,会独立显示。 示例: 1 2 3 4 5 6 gaussdb=# SELECT * FROM GS_WLM_RESPOOL_CPU_INFO(); respool_name | control_group | cpu_affinity | cpu_usage ---------------+----------------------+--------------+----------- respool_cpu_2 | respool_cpu_2:Medium | 0-95 | 78 default_pool | DefaultClass:Medium | 0-32 | 65 (2 rows) gs_wlm_respool_connection_info() 描述:描述资源池的连接数资源限制和使用信息。 返回值类型:setof record。 名称 类型 描述 respool_name name 资源池名称。 max_connections name 资源池最大连接数。 curr_connections integer 当前资源池已有连接数。 示例: 1 2 3 4 5 6 gaussdb=# SELECT * FROM GS_WLM_RESPOOL_CONNECTION_INFO(); respool_name | max_connections | curr_connections ---------------+-----------------+------------------ respool1 | -1 | 0 default_pool | -1 | 1 (2 rows) gs_wlm_respool_memory_info() 描述:描述资源池的内存资源限制和使用信息。 返回值类型:setof record 名称 类型 描述 respool_name name 资源池名称。 max_dynamic_memory integer 最大可使用的动态内存。 current_dynamic_memory integer 当前已经使用的动态内存。 max_shared_memory integer 最大可使用的共享内存。 current_shared_memory integer 当前已经使用的共享内存。 shared_memory_hits_percent integer 当前资源池所在的缓存命中率。 在出现资源池动态内存使用超过最大值时,可能会出现查询GUC参数current_dynamic_memory返回的结果大于max_dynamic_memory的情况,这属于正常现象,实际并未申请内存。 示例: 1 2 3 4 5 6 gaussdb=# SELECT * FROM GS_WLM_RESPOOL_MEMORY_INFO(); respool_name | max_dynamic_memory | current_dynamic_memory | max_shared_memory | current_shared_memory | shared_memory_hits_percent -----------------+--------------------+------------------------+-------------------+-----------------------+---------------------------- default_pool | -1 | 3383kB | -1 | 3848kB | 90 resource_pool_a | 30720kB | 0kB | -1 | 0kB | 0 (2 rows) gs_wlm_respool_concurrency_info() 描述:描述资源池中的并发数资源限制和使用信息。 返回值类型:setof record 名称 类型 描述 respool_name name 资源池名称。 max_concurrency integer 资源池支持的最大并发数。 running_conurrency integer 当前资源池正在执行的并发数。 waiting_concurrency integer 当前资源池正在等待的并发数。 示例: gaussdb=# SELECT * FROM GS_WLM_RESPOOL_CONCURRENCY_INFO(); respool_name | max_concurrency | running_concurrency | waiting_concurrency -----------------+-----------------+---------------------+--------------------- default_pool | -1 | 1 | 0 resource_pool_a | -1 | 0 | 0 (2 rows) gs_wlm_respool_io_info() 描述:描述资源池的I/O资源限制和使用信息。 返回值类型:setof record 名称 类型 描述 respool_name name 资源池名称。 io_limits integer 每秒触发I/O的次数上限。0表示不控制。 单位:GUC参数io_control_unit,I/O管控时用来对I/O次数进行计数的单位。1个io_control_unit次为1次IOPS。 io_priority text I/O利用率高达90%时,消耗I/O作业进行I/O资源管控时关联的优先级等级。None表示不控制。 current_iops integer 当前I/O已经触发的次数。 当前I/O统计值存在偶尔超过上限的情况,与I/O统计算法有关,属于正常波动。 示例: gaussdb=# SELECT * FROM GS_WLM_RESPOOL_IO_INFO(); respool_name | io_limits | io_priority | current_iops -----------------+-----------+-------------+-------------- default_pool | 0 | None | 0 resource_pool_a | 0 | Low | 0 (2 rows) gs_wlm_user_space_info() 描述:描述用户的存储空间的使用信息。 返回值类型:setof record 名称 类型 描述 user_name name 用户名称。 max_permanent_space bigint 用户可使用的最大永久存储空间,单位:B。 current_ permanent_space bigint 当前用户已使用的永久存储空间,单位:B。 max_temp_space bigint 用户可使用的最大临时存储空间,单位:B。 current_ temp_space bigint 当前用户已使用的临时存储空间,单位:B。 max_spill_space bigint 用户可使用的最大算子落盘存储空间,单位:B。 current_ spill_space bigint 当前用户已使用的算子落盘存储空间,单位:B。 示例: 1 2 3 4 5 gaussdb=# SELECT * FROM GS_WLM_USER_SPACE_INFO(); user_name | max_permanent_space | current_permanent_space | max_temp_space | current_temp_space | max_spill_space | current_spill_space -----------------------------+---------------------+-------------------------+----------------+--------------------+-----------------+--------------------- xy | -1 | 2464 | -1 | 0 | -1 | 0 (1 rows) gs_wlm_session_io_info() 描述:描述session的I/O的使用信息。 返回值类型:setof record 名称 类型 描述。 session_id integer 会话ID。 io_limits integer 每秒触发I/O的次数上限。0表示不控制。 单位:GUC参数io_control_unit,I/O管控时用来对I/O次数进行计数的单位。1个io_control_unit次为1次IOPS。 io_priority text I/O利用率高达90%时,消耗I/O作业进行I/O资源管控时关联的优先级等级。None表示不控制。 current_iops integer 当前I/O已经触发的次数。 当前I/O统计值存在偶尔超过上限的情况,与I/O统计算法有关,属于正常波动。 wait_time integer 当前I/O超过上限后等待的时间总和。 示例: 1 2 3 4 5 gaussdb=# SELECT * FROM GS_WLM_SESSION_IO_INFO(); session_id | io_limits | io_priority | current_iops | wait_time -----------------+-----------+-------------+--------------+----------- 139976325986048 | 10 | None | 0 | 2709 (1 row) gs_wlm_session_memory_info() 描述:描述session的内存的使用信息。 返回值类型:setof record 名称 类型 描述 session_id integer session_id。 sess_used_dynamic_memory bigint 当前已经使用的动态内存,单位为B。 sess_max_dynamic_memory bigint 最大可使用的动态内存,单位为B。 示例: 1 2 3 4 5 6 gaussdb=# SELECT * FROM GS_WLM_SESSION_MEMORY_INFO(); sessid | sess_used_dynamic_memory | sess_max_dynamic_memory -----------------+--------------------------+------------------------- 139976325986048 | 4326056 | -1 139976402532096 | 4452664 | -1 (2 rows)
  • DB_PART_COL_STATISTICS DB_PART_COL_STATISTICS视图显示当前用户可访问的表分区的列统计信息和直方图信息。所有用户都可以访问该视图。该视图同时存在于PG_CATALOG和SYS Schema下。 表1 DB_PART_COL_STATISTICS字段 名称 类型 描述 owner character varying(128) 分区表的所有者。 table_name character varying(128) 表名。 partition_name character varying(128) 表分区名称。 column_name character varying(4000) 列名。 num_distinct numeric 暂不支持,值为NULL。 low_value raw 暂不支持,值为NULL。 high_value raw 暂不支持,值为NULL。 density numeric 暂不支持,值为NULL。 num_nulls numeric 暂不支持,值为NULL。 num_buckets numeric 暂不支持,值为NULL。 sample_size numeric 暂不支持,值为NULL。 last_analyzed date 暂不支持,值为NULL。 global_stats character varying(3) 暂不支持,值为NULL。 user_stats character varying(3) 暂不支持,值为NULL。 notes character varying(63) 暂不支持,值为NULL。 avg_col_len numeric 暂不支持,值为NULL。 histogram character varying(15) 暂不支持,值为NULL。 schema character varying(64) 列所属的名称空间的名称。 父主题: 分区表
  • DBE_SQL_UTIL.drop_sql_patch drop_sql_patch是用于在当前建立连接的CN上删除SQL PATCH的接口函数,返回执行是否成功,如表1所示。 限制:仅初始用户、sysadmin、opradmin和monadmin用户有权限调用。 CN之间SQL PATCH不共享,要在各个CN上单独执行。 开启负载均衡场景或者需要指定创建的CN的场景,推荐使用DBE_SQL_UTIL.drop_remote_sql_patch接口进行删除操作。 表1 DBE_SQL_UTIL.drop_sql_patch入参和返回值列表 参数 类型 描述 patch_name IN name PATCH名称。 result OUT bool 执行是否成功。 父主题: DBE_SQL_UTIL Schema
  • 定时任务管理 创建测试表。 1 gaussdb=# CREATE TABLE test(id int, time date); 当结果显示为如下信息,则表示创建成功。 1 CREATE TABLE 创建自定义存储过程。 1 2 3 4 5 6 7 8 9 gaussdb=# CREATE OR REPLACE PROCEDURE PRC_JOB_1() AS N_NUM integer :=1; BEGIN FOR I IN 1..1000 LOOP INSERT INTO test VALUES(I,SYSDATE); END LOOP; END; / 当结果显示为如下信息,则表示创建成功。 1 CREATE PROCEDURE 创建任务。 新创建的任务(未指定job_id)表示每隔1分钟执行一次存储过程PRC_JOB_1。 1 2 3 4 5 gaussdb=# call dbe_task.submit('call public.prc_job_1(); ', sysdate, 'interval ''1 minute''', :a); id ----- 1 (1 row) 指定job_id创建任务,其中job_id可用范围为1~32767。 1 2 3 4 5 gaussdb=# call dbe_task.id_submit(1,'call public.prc_job_1(); ', sysdate, 'interval ''1 minute'''); id_submit ---------- (1 row) 通过视图查看当前用户已创建的任务信息。 1 2 3 4 5 gaussdb=# select job,dbname,start_date,last_date,this_date,next_date,broken,status,interval,failures,what from my_jobs; job | dbname | start_date | last_date | this_date | next_date | broken | status | interval | failures | what -----+--------+---------------------+----------------------------+----------------------------+---------------------+--------+--------+---------------------+----------+--------------------------- 1 | testdb | 2017-07-18 11:38:03 | 2017-07-18 13:53:03.607838 | 2017-07-18 13:53:03.607838 | 2017-07-18 13:54:03 | n | s | interval '1 minute' | 0 | call public.prc_job_1(); (1 row) 停止任务。 1 2 3 4 5 gaussdb=# call dbe_task.finish(1,true); finish -------- (1 row) 启动任务。 1 2 3 4 5 gaussdb=# call dbe_task.finish(1,false); finish -------- (1 row) 修改任务属性。 修改JOB的Next_date参数信息。 1 2 3 4 5 6 --修改Job1的Next_date为1小时以后开始执行。 gaussdb=# call dbe_task.next_date(1, sysdate+1.0/24); next_date ----------- (1 row) 修改JOB的Interval参数信息。 1 2 3 4 5 6 --修改Job1的Interval为每隔1小时执行一次。 gaussdb=# call dbe_task.interval(1,'sysdate + 1.0/24'); interval ---------- (1 row) 修改JOB的What参数信息。 1 2 3 4 5 6 --修改Job1的What为执行SQL语句“insert into public.test values(333, sysdate+5);”。 gaussdb=# call dbe_task.content(1,'insert into public.test values(333, sysdate+5);'); content ------ (1 row) 同时修改JOB的Next_date、Interval、What等多个参数信息。 1 2 3 4 5 gaussdb=# call dbe_task.update(1, 'call public.prc_job_1();', sysdate, 'interval ''1 minute'''); update -------- (1 row) 删除JOB。 1 2 3 4 5 gaussdb=# call dbe_task.cancel(1); cancel -------- (1 row) 查看JOB执行情况。 当JOB自动执行时,如果JOB执行失败(即job_status状态值为'f')时,请联系管理员查看gs_log的运行日志来查看JOB的失败信息。 日志信息如下所示,从失败信息(detail error msg)中可以查看失败的具体错误。 LOG: Execute Job Detail: job_id: 1 what: call public.test(); start_date: 2017-07-19 23:30:47.401818 job_status: failed detail error msg: relation "test" does not exist end_date: 2017-07-19 23:30:47.401818 next_run_date: 2017-07-19 23:30:56.855827 JOB的权限控制。 当创建一个JOB时,该JOB会和创建该JOB的数据库和用户绑定(即:pg_job系统表新增的JOB记录中的dbname和log_user)。 如果当前用户是DBA用户、系统管理员或该JOB的创建用户(即:pg_job中的log_user),那么该用户有权限通过高级包接口remove、change、next_data、what、interval删除或修改JOB的参数信息。否则,会提示当前用户没有权限操作该JOB。 如果当前数据库是该JOB创建所属的数据库(即:pg_job系统表中的dbname),那么连接到当前数据库上可以通过高级包接口cancel、update、next_data、content、interval删除或修改JOB的参数信息。 当删除JOB所属的数据库(即:pg_job系统表中的dbname)时,系统会关联删除该数据库从属的JOB记录。 当删除JOB所属的用户(即:pg_job系统表中的log_user)时,系统会关联删除该用户从属的JOB记录。 JOB的并发控制管理。 用户可以通过配置GUC参数job_queue_processes调整并发同时执行的JOB数目。 当job_queue_processes为0时,表示不启用定时任务功能,任何job都不会被执行。 当job_queue_processes为大于0时,表示启用定时任务功能且系统能够并发处理的最大任务数。 由于并行运行的任务数太多会消耗更多的系统资源,因此需要设置系统并发处理的任务数,当前并发的任务数达到job_queue_processes时,且此时又有任务到期,那么这些任务本次得不到执行而延期到下一轮询周期。因此,建议用户需要根据每个任务的执行时长合理的设置任务的时间间隔(即submit接口中的interval参数),来避免由于任务执行时间太长而导致下个轮询周期无法正常执行。 注:对于不使用JOB的集群中,用户可以通过在集群安装初始化完成后,通过设置job_queue_processes为0来关闭JOB功能,减少系统资源的消耗。
  • 背景信息 当客户在使用数据库过程中,如果白天执行一些耗时比较长的任务(例如:统计数据汇总之类或从其他数据库同步数据的任务),会对正常的业务有性能影响,所以客户经常选择在晚上执行,无形中增加了客户的工作量。因此GaussDB Kernel数据库兼容ORA数据库中定时任务的功能,可以由客户创建定时任务,当任务时间点到达后可以自动触发任务的执行,从而可以减少客户运维的工作量。 GaussDB Kernel数据库兼容ORA定时任务功能主要通过DBE_SCHEDULER和DBE_TASK高级包提供的接口,可以实现定时任务的创建、任务到期自动执行、任务删除和修改任务属性(包括:任务id、任务的关闭开启、任务的触发时间、触发时间间隔和任务内容等)。推荐使用DBE_SCHEDULER接口,保证高可用性、高可靠性,并且支持更灵活的任务调度。接口说明、迁移指导示例请参见DBE_SCHEDULER章节。
  • 美元引用的字符串常量 如果在字符串序列中包含有'(单引号),那么应当将'(单引号)加倍为''(两个单引号)否则sql语句很可能无法执行。 如果字符串中包含很多单引号或者反斜杠,那么理解字符串的内容可能就会变得很苦涩,并且容易出错,因为单引号都要加倍。 为了让这种场合下的查询更具可读性,允许另外一种称作“美元符界定”的字符串常量书写办法。一个通过美元符界定声明的字符串常量由一个美元符号($)、零个或多个字符组成的"记号"、另一个美元符号、组成字符串常量的任意字符序列、一个美元符号、与前面相同的记号、一个美元符号组成的。 gaussdb=# SELECT $$it's an example$$; ?column? ----------------- it's an example (1 row) 父主题: 附录
  • GS_AUDITING_ACCESS GS_AUDITING_ACCESS视图显示对数据库DML相关操作的所有审计信息。需要有系统管理员或安全策略管理员权限才可以访问此视图。 表1 GS_AUDITING_ACCESS字段 名称 类型 描述 polname name 策略名称,需要唯一,不可重复。 pol_type text 审计策略类型。值为‘access’,表示审计DML操作。 polenabled boolean 用来表示策略开关是否启动。 t(true):表示启动。 f(false):表示不启动。 access_type name DML数据库操作相关类型。例如,SELECT、INSERT、DELETE等。 label_name name 资源标签名称。对应系统表gs_auditing_policy中的polname字段。 access_object text 数据库资产的路径。 filter_name text 过滤条件的逻辑字符串。 父主题: 审计
  • GLOBAL_STATIO_SYS_SEQUENCES GLOBAL_STATIO_SYS_SEQUENCES视图显示各节点的命名空间中所有系统序列的I/O状态信息,如表1所示。 表1 GLOBAL_STATIO_SYS_SEQUENCES字段 名称 类型 描述 node_name name 节点名称。 relid oid 序列OID。 schemaname name 序列中模式名。 relname name 序列名。 blks_read bigint 从序列中读取的磁盘块数。 blks_hit bigint 序列中缓存命中数。 父主题: Cache/IO
  • geqo_pool_size 参数说明:控制GEQO使用池的大小,也就是基因全体中的个体数量。 参数类型:整型 参数单位:无 取值范围:0 ~ 2147483647‬ 默认值:0 设置为0,表示使用系统自适应方式,GaussDB会基于geqo_effort和表的个数选取合适的值。其余情况至少是2,且有用的值一般在100到1000之间。 设置方式:该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 设置建议:无
  • geqo 参数说明:控制基因查询优化的使用。 若该参数通过执行gs_guc reload修改时,如果当前节点上的某个session的连接不是来自于客户端,而是来自于该节点所属集群上的其他节点,那么执行gs_guc reload后该参数在该session上不会立即生效,需与连接节点断开连接后重新连接才会生效。 参数类型:布尔型 参数单位:无 取值范围: on:表示使用。 off:表示不使用。 默认值:on 设置方式:该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 设置建议:通常情况下在执行过程中不要关闭,geqo_threshold变量提供了更精细的控制GEQO的方法。
  • geqo_threshold 参数说明:如果执行语句的数量超过设计的FROM的项数,则会使用基因查询优化来执行查询。 对于简单的查询,通常用详尽搜索方法,当涉及多个表的查询的时候,用GEQO可以更好的管理查询。 一个FULL OUTER JOIN构造仅作为一个FROM项。 参数类型:整型 参数单位:无 取值范围:2 ~ 2147483647‬ 默认值:12 设置方式:该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 设置建议:无
  • MY_CONSTRAINTS MY_CONSTRAINTS视图显示当前用户下表中约束的信息。该视图同时存在于PG_CATALOG和SYS Schema下。具体字段信息如表1所示。 表1 MY_CONSTRAINTS字段 名称 类型 描述 constraint_name character varying(64) 约束名。 constraint_type text 约束类型: c:表示检查约束。 f:表示外键约束。 p:表示主键约束。 u:表示唯一约束。 table_name character varying(64) 约束相关的表名。 index_owner character varying(64) 约束相关的索引的所有者(只针对唯一约束和主键约束)。 index_name character varying(64) 约束相关的索引的名称(只针对唯一约束和主键约束)。 owner character varying(64) 约束创建者。 父主题: 其他系统视图
  • STAT_USER_TABLES 显示当前节点所有Schema中用户自定义普通表的状态信息,如表1所示。 表1 STAT_USER_TABLES字段 名称 类型 描述 relid oid 表的OID。 schemaname name 该表所在的Schema名。 relname name 表名。 seq_scan bigint 该表发起的顺序扫描数。 seq_tup_read bigint 顺序扫描抓取的活跃行数。 idx_scan bigint 该表发起的索引扫描数。 idx_tup_fetch bigint 索引扫描抓取的活跃行数。 n_tup_ins bigint 插入行数。 n_tup_upd bigint 更新行数。 n_tup_del bigint 删除行数。 n_tup_hot_upd bigint HOT更新行数(即没有更新索引列的行数)。 n_live_tup bigint 估计活跃行数。 n_dead_tup bigint 估计不活跃行数。 last_vacuum timestamp with time zone 最后一次该表是手动清理的(不计算VACUUM FULL)时间。 last_autovacuum timestamp with time zone 上次被autovacuum守护线程清理的时间。 last_analyze timestamp with time zone 上次手动分析该表的时间。 last_autoanalyze timestamp with time zone 上次被autovacuum守护线程分析的时间。 vacuum_count bigint 该表被手动清理的次数(不计算VACUUM FULL)。 autovacuum_count bigint 该表被autovacuum清理的次数。 analyze_count bigint 该表被手动分析的次数。 autoanalyze_count bigint 该表被autovacuum守护线程分析的次数。 last_updated timestamp with time zone 视图中该对象监控数据最后一次更新的时间。 父主题: Object
  • 客户端配置 上传证书文件,将在服务端配置(服务端配置请联系管理员)操作中生成的文件client.key、client.crt、cacert.pem放置在客户端。 示例一: package main //依赖包根据环境中依赖包路径设置 import ( "database/sql" "fmt" _ "gitee.com/opengauss/openGauss-connector-go-pq" "log" ) // 以双向认证为例,本示例以用户名和密码保存在环境变量中为例,运行本示例前请先在本地环境中设置环境变量(环境变量名称请根据自身情况进行设置) func main() { hostip := os.Getenv("GOHOSTIP") //GOHOSTIP为写入环境变量的IP地址 port := os.Getenv("GOPORT") //GOPORT为写入环境变量的port usrname := os.Getenv("GOUSRNAME") //GOUSRNAME为写入环境变量的用户名 passwd := os.Getenv("GOPASSWD") //GOPASSWDW为写入环境变量的用户密码 sslpasswd := os.Getenv("GOSSLPASSWD") //GOSSLPASSWDW为写入环境变量的密码短语 dsnStr := "host=" + hostip + " port=" + port + " user=" + usrname + " password=" + passwd + " dbname=gaussdb sslcert=certs/client.crt sslkey=certs/client.key sslpassword=" + sslpasswd parameters := []string{ " sslmode=require", " sslmode=verify-ca sslrootcert=certs/cacert.pem", } for _, param := range parameters { db, err := sql.Open("gaussdb", dsnStr+param) if err != nil { log.Fatal(err) } var f1 int err = db.QueryRow("select 1").Scan(&f1) if err != nil { log.Fatal(err) } else { fmt.Printf("RESULT: select 1: %d\n", f1) } db.Close() } } 示例二: package main //依赖包根据环境中依赖包路径设置 import ( "database/sql" _ "gitee.com/opengauss/openGauss-connector-go-pq" "log" "strings" ) // 以验证sslpassword为主,本示例以用户名和密码保存在环境变量中为例,运行本示例前请先在本地环境中设置环境变量(环境变量名称请根据自身情况进行设置) func main() { hostip := os.Getenv("GOHOSTIP") //GOHOSTIP为写入环境变量的IP地址 port := os.Getenv("GOPORT") //GOPORT为写入环境变量的port usrname := os.Getenv("GOUSRNAME") //GOUSRNAME为写入环境变量的用户名 passwd := os.Getenv("GOPASSWD") //GOPASSWDW为写入环境变量的用户密码 dsnStr := "host=" + hostip + " port=" + port + " user=" + usrname + " password=" + passwd + " dbname=gaussdb" sslpasswd := os.Getenv("GOSSLPASSWD") //GOSSLPASSWDW为写入环境变量的密码短语 connStrs := []string{ " sslmode=verify-ca sslcert=certs/client_rsa.crt sslkey=certs/client_rsa.key sslpassword=" + sslpasswd + " sslrootcert=certs/cacert_rsa.pem", " sslmode=verify-ca sslcert=certs/client_ecdsa.crt sslkey=certs/client_ecdsa.key sslpassword=" + sslpasswd + " sslrootcert=certs/cacert_ecdsa.pem", } for _, connStr := range connStrs { db, err := sql.Open("gaussdb", dsnStr+connStr) if err != nil { log.Fatal(err) } var f1 int err = db.QueryRow("select 1").Scan(&f1) if err != nil { if !strings.HasPrefix(err.Error(), "connect failed.") { log.Fatal(err) } } db.Close() } }
  • 数据库事务正确执行的四个特性是什么? 答:数据库管理系统(DBMS)在写入或更新资料的过程中,为保证事务(transaction)正确执行,必须具备的四个特性ACID,Atomicity(原子性)、Consistency(一致性)、Isolation(隔离性)、Durability(持久性)。 Atomicity(原子性):又称为不可分割性。一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。 Consistency(一致性):在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设规则,这包含资料的精确度、串联性以及后续数据库可以自发性地完成预定的工作。 Isolation(隔离性):又称为独立性。数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。 Durability(持久性):事务处理结束后,对数据的修改是永久的,即便系统故障也不会丢失。 父主题: FAQ
  • DICTIONARY DICTIONARY视图显示数据库中的数据字典表和系统视图的描述信息。所有用户都可以访问,该视图同时存在于PG_CATALOG和SYS Schema下。 表1 DICTIONARY字段 名称 类型 描述 table_name character varying(64) 对象的名称。 comments character varying(4000) 对象上的文本注释。 父主题: 其他系统视图
  • ADM_PART_INDEXES ADM_PART_INDEXES视图显示数据库中所有分区表索引的信息。默认只有系统管理员权限才可以访问,普通用户需要授权才可以访问。该视图同时存在于PG_CATALOG和SYS Schema下。 表1 ADM_PART_INDEXES字段 名称 类型 描述 def_tablespace_name name 分区表索引的表空间名称。 index_owner character varying(64) 分区表索引的所有者名称。 index_name character varying(64) 分区表索引的名称。 partition_count bigint 分区表索引的索引分区的个数。 partitioning_key_count integer 分区表的分区键个数。 partitioning_type text 分区表的分区策略。 说明: 当前分区表策略支持范围见CREATE TABLE PARTITION。 schema character varying(64) 分区表索引所属模式名称。 table_name character varying(64) 分区表索引所属的分区表名称。 父主题: 分区表
  • GLOBAL_STATIO_USER_SEQUENCES GLOBAL_STATIO_USER_SEQUENCES视图显示各节点的命名空间中所有用户关系表类型为序列的I/O状态信息,如表1所示。 表1 GLOBAL_STATIO_USER_SEQUENCES字段 名称 类型 描述 node_name name 节点名称。 relid oid 序列OID。 schemaname name 序列中模式名。 relname name 序列名。 blks_read bigint 从序列中读取的磁盘块数。 blks_hit bigint 序列中缓存命中数。 父主题: Cache/IO
  • 伪类型 GaussDB数据类型中包含一系列特殊用途的类型,这些类型按照类别被称为伪类型。伪类型不能作为字段的数据类型,但是可以用于声明函数的参数或者结果类型。 当一个函数不仅是简单地接受并返回某种SQL数据类型的情况下伪类型是很有用的。表1列出了所有的伪类型。 表1 伪类型 名称 描述 any 表示函数接受任何输入数据类型。 anyelement 表示函数接受任何数据类型。 anyarray 表示函数接受任意数组数据类型。 anynonarray 表示函数接受任意非数组数据类型。 anyenum 表示函数接受任意枚举数据类型。 anyrange 表示函数接受任意范围数据类型。 cstring 表示函数接受或者返回一个空结尾的C字符串。 internal 表示函数接受或者返回一种服务器内部的数据类型。 language_handler 声明一个过程语言调用句柄返回language_handler。 fdw_handler 声明一个外部数据封装器返回fdw_handler。 record 标识函数返回一个未声明的行类型。 trigger 声明一个触发器函数返回trigger。 void 表示函数不返回数值。 opaque 一个已经过时的类型,以前用于所有上面这些用途。 声明用C语言编写的函数(无论是内置的还是动态装载的)都可以接受或者返回任何这样的伪数据类型。当伪类型作为参数类型使用时,用户需要保证函数的正常运行。 用过程语言编写的函数只能使用实现语言允许的伪类型。目前,过程语言都不允许使用作为参数类型的伪类型,并且只允许使用void和record作为结果类型。一些多态的函数还支持使用anyelement、anyarray、anynonarray、anyenum和anyrange类型。 每一个被声明为anyelement的位置(参数或返回值)都允许具有任意特定的实际数据类型,但是在任何给定的查询中必须全部是相同的实际类型。 伪类型internal用于声明只能在数据库系统内部调用的函数,这些函数不能直接在SQL查询里调用。如果函数至少有一个internal类型的参数,则不能从SQL里调用它。建议不要创建任何声明返回internal的函数,除非其至少有一个internal类型的参数。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 --创建表。 gaussdb=# CREATE TABLE t1 (a int); --插入两条数据。 gaussdb=# INSERT INTO t1 values(1),(2); --创建函数showall()。 gaussdb=# CREATE OR REPLACE FUNCTION showall() RETURNS SETOF record AS $$ SELECT count(*) from t1; $$ LANGUAGE SQL; --调用函数showall()。 gaussdb=# SELECT showall(); showall --------- (2) (1 row) --删除函数。 gaussdb=# DROP FUNCTION showall(); --删除表。 gaussdb=# DROP TABLE t1; 父主题: 数据类型
  • lc_time_names 参数说明:控制用于显示日期和月份名称及缩写的语言。影响DATE_FORMAT()、DAYNAME()以及MONTHNAME()函数输出结果。不影响STR_TO_DATE()和GET_FORMAT()的表现。 参数类型:字符串 参数单位:无 取值范围:参数应当为简易格式的IETF语言标记,例如en_US、zh_CN等。 默认值:en_US 设置方式:该参数属于USERSET类型参数,请参考设置参数中对应设置方法进行设置 设置建议:根据业务需要,切换合适的语言。
  • default_week_format 参数说明:用于week()函数的默认mode值,取值范围与表现如下表所示。 default_week_format 一周的第一天 范围 第1周定义 0 周日 0~53 今年第一个有周日的周。 1 周一 0~53 今年第一个有4天及以上的周。 2 周日 1~53 今年第一个有周日的周。 3 周一 1~53 今年第一个有4天及以上的周。 4 周日 0~53 今年第一个有4天及以上的周。 5 周一 0~53 今年第一个有周一的周。 6 周日 1~53 今年第一个有4天及以上的周。 7 周一 1~53 今年第一个有周一的周。 一年的第1周,其中的1代表序号值。根据week_format不同,如第三列所示,一年的第一个周序号可能为0。 参数类型:整型 参数单位:无 取值范围:[0, 7] 默认值:0 设置方式:该参数属于USERSET类型参数,请参考设置参数中对应设置方法进行设置 设置建议:根据业务需要,选择合适的mode。
  • lc_time 参数说明:设置时间和区域的显示格式,影响to_char之类的函数的输出。可接受的值是系统相关的。 该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:字符串 使用命令locale -a查看当前系统支持的区域和相应的编码格式,并可以选择进行设置。 默认情况下,gs_initdb会根据当前的系统环境初始化此参数,通过locale命令可以查看当前的配置环境。 若该参数通过执行gs_guc reload修改时,如果当前节点上的某个session的连接不是来自于客户端,而是来自于该节点所属集群上的其他节点,那么执行gs_guc reload后该参数在该session上不会立即生效,需与连接节点断开连接后重新连接才会生效。 默认值:C
  • lc_messages 参数说明:设置信息显示的语言。 可接受的值是与系统相关的。 在一些系统上,这个区域范畴并不存在,不过仍然允许设置这个变量,只是不会有任何效果。同样,也有可能是所期望的语言的翻译信息不存在。在这种情况下,用户仍然能看到英文信息。 该参数属于SUSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:字符串 使用命令locale -a查看当前系统支持的区域和相应的编码格式,并可以选择进行设置。 默认情况下,gs_initdb会根据当前的系统环境初始化此参数,通过locale命令可以查看当前的配置环境。 默认值:C
  • lc_monetary 参数说明:设置货币值的显示格式,影响to_char之类的函数的输出。可接受的值是系统相关的。 该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:字符串 使用命令locale -a查看当前系统支持的区域和相应的编码格式,并可以选择进行设置。 默认情况下,gs_initdb会根据当前的系统环境初始化此参数,通过locale命令可以查看当前的配置环境。 若该参数通过执行gs_guc reload修改时,如果当前节点上的某个session的连接不是来自于客户端,而是来自于该节点所属集群上的其他节点,那么执行gs_guc reload后该参数在该session上不会立即生效,需与连接节点断开连接后重新连接才会生效。 默认值:C
  • client_encoding 参数说明:设置客户端的字符编码类型。 请根据前端业务的情况确定。尽量客户端编码和服务器端编码一致,提高效率。 该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:兼容PostgreSQL所有的字符编码类型。其中UTF8表示使用数据库的字符编码类型。 使用命令locale -a查看当前系统支持的区域和相应的编码格式,并可以选择进行设置;不同操作系统之间,或者相同操作系统的不同版本之间,排序规则可能存在差异和变化。当应用业务在上述这些操作系统之间进行逻辑迁移时,操作系统排序规则的差异和变化可能会导致索引、分区、排序算子等数据库功能行为的差异,如相同的范围查询语句返回的数据结果集不同、相同的排序查询语句返回的查询结果不同等。应用业务需要根据操作系统发布的locale差异,在业务上排查业务数据是否涉及相关的字符。 默认情况下,gs_initdb会根据当前的系统环境初始化此参数,通过locale命令可以查看当前的配置环境。 参数建议保持默认值,不建议通过gs_guc工具或其他方式直接在gaussdb.conf文件中设置client_encoding参数,即使设置也不会生效,以保证集群内部通信编码格式一致。 client_encoding支持设置为GB18030_2022字符编码,当client_encoding=gb18030_2022时,需要保证客户端操作系统支持的GB18030字符集已升级到2022版本。 当数据库字符集编码为UTF8,且当前系统支持的区域下相应的编码格式为GB18030时,若客户端操作系统支持的GB18030字符集已升级到2022版本,且数据库中存在客户端GB18030字符集升级前存入的历史数据,则存在以下情况: set client_encoding = gb18030时,UTF8数据库中的历史数据返回给客户端的字符编码与客户端字符集升级前保持一致,但字符集升级过程中发生映射关系改变的38个字符的字形显示与2022版本保持一致。 set client_encoding = gb18030_2022时,UTF8数据库中的历史数据返回给客户端的字符编码与客户端字符集升级后保持一致,字形与升级前保持一致。这是因为GB18030字符集自身的各版本间存在不完全兼容,可能导致数据的不一致性。因此,若客户端涉及GB18030字符集升级且存在历史数据的场景,在升级前应进行历史数据的升级转换。 client_encoding支持设置为ZHS16GBK字符编码,下表展示了ZHS16GBK、GB18030、GB18030_2022字符集所有转换关系对应的server_encoding与client_encoding设置方式: server_encoding server_encoding locale 设置方法 zhs16gbk utf8 utf8 数据库自动获取locale取值。 utf8 zhs16gbk gbk gsql通过用户手动执行:set client_encoding = zhs16gbk。 JDBC连接时通过url参数直接指定:characterEncoding=zhs16gbk。 zhs16gbk zhs16gbk gbk gsql连接时数据库自动获取locale取值,内部进行处理后自动设置client_encoding = zhs16gbk。 JDBC连接时通过url参数直接指定:characterEncoding=zhs16gbk。 zhs16gbk gb18030 gb18030 gsql连接时数据库自动获取locale取值。 JDBC连接时通过url参数直接指定:characterEncoding=gb18030。 gb18030 zhs16gbk gbk gsql不支持该设置。 JDBC连接时通过url参数直接指定characterEncoding=zhs16gbk。 zhs16gbk gb18030-2022 gb18030 gsql连接时,用户手动执行:set client_encoding = gb18030_2022。 JDBC连接时通过url参数直接指定:characterEncoding=gb18030_2022。 gb18030-2022 zhs16gbk gbk gsql不支持该设置。 JDBC连接时通过url参数直接指定characterEncoding=zhs16gbk。 gb18030 utf8 utf8 数据库自动获取locale取值。 utf8 gb18030 gb18030 数据库自动获取locale取值。 JDBC连接时通过url参数直接指定:characterEncoding=gb18030。 gb18030_2022 utf8 utf8 数据库自动获取locale取值。 utf8 gb18030_2022 gb18030 gsql连接时,用户手动执行:set client_encoding = gb18030_2022 JDBC连接时通过url参数直接指定:characterEncoding=gb18030_2022 gb18030 gb18030 gb18030 数据库自动获取locale取值。 JDBC连接时通过url参数直接指定:characterEncoding=gb18030。 gb18030_2022 gb18030_2022 gb18030 gsql连接时数据库自动获取locale取值,内部进行处理后自动设置client_encoding = gb18030_2022。 JDBC连接时通过url参数直接指定:characterEncoding=gb18030_2022。 默认值:UTF8 推荐值:SQL_ASCII/UTF8
  • lc_numeric 参数说明:设置数值的显示格式,影响to_char之类的函数的输出。可接受的值是系统相关的。 该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:字符串 使用命令locale -a查看当前系统支持的区域和相应的编码格式,并可以选择进行设置。 默认情况下,gs_initdb会根据当前的系统环境初始化此参数,通过locale命令可以查看当前的配置环境。 若该参数通过执行gs_guc reload修改时,如果当前节点上的某个session的连接不是来自于客户端,而是来自于该节点所属集群上的其他节点,那么执行gs_guc reload后该参数在该session上不会立即生效,需与连接节点断开连接后重新连接才会生效。 默认值:C
  • DateStyle 参数说明:设置日期和时间值的显示格式,以及有歧义的输入值的解析规则。 这个变量包含两个独立的加载部分:输出格式声明(ISO、Postgres、SQL、German)和输入输出的年/月/日顺序(DMY、MDY、YMD、Euro、European、US、NonEuro、NonEuropean、Default)。两个部分可以独立设置或者一起设置。关键字Euro和European等价于DMY;关键字US、NonEuro、NonEuropean等价于MDY 。 参数类型:字符串 参数单位:无 取值范围:输出格式声明与输入输出的年/月/日顺序的排列组合(两个部分也可以单独设置)。 输出格式声明:ISO、Postgres、SQL、German 输入输出的年/月/日顺序:DMY(Euro、European)、MDY(US、NonEuro、NonEuropean)、YMD 默认值:"ISO, MDY" gs_initdb会将这个参数初始化成与lc_time一致的值。 该参数通过执行gs_guc reload修改时,如果当前节点上的某个session的连接不是来自于客户端,而是来自于该节点所属集群上的其他节点,那么执行gs_guc reload后该参数在该session上不会立即生效,需与连接节点断开连接后重新连接才会生效。 设置方式:该参数属于USERSET类型参数,请参见表1中对应设置方法进行设置。 设置建议:优先推荐使用ISO格式。
  • extra_float_digits 参数说明:这个参数为浮点数值调整显示的数据位数,浮点类型包括float4、float8 以及几何数据类型。参数值加在标准的数据位数上(FLT_DIG或DBL_DIG中合适的)。 该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:整型,-15~3 设置为3,表示包括部分关键的数据位。这个功能对转储那些需要精确恢复的浮点数据特别有用。 设置为负数,表示消除不需要的数据位。 默认值:0
共100000条