华为云用户手册

  • 数据库对象尺寸函数 数据库对象尺寸函数计算数据库对象使用的实际磁盘空间。 pg_column_size(any) 描述:存储一个指定的数值需要的字节数(可能压缩过)。 返回值类型:int 备注:pg_column_size显示用于存储某个独立数据值的空间。 1 2 3 4 5 postgres=# SELECT pg_column_size(1); pg_column_size ---------------- 4 (1 row) pg_database_size(oid) 描述:指定OID代表的数据库使用的磁盘空间。 返回值类型:bigint pg_database_size(name) 描述:指定名称的数据库使用的磁盘空间。 返回值类型:bigint 备注:pg_database_size接受一个数据库的OID或者名称,然后返回该对象使用的全部磁盘空间。 示例: 1 2 3 4 5 postgres=# SELECT pg_database_size('postgres'); pg_database_size ------------------ 51590112 (1 row) pg_relation_size(oid) 描述:指定OID代表的表或者索引所使用的磁盘空间。 返回值类型:bigint get_db_source_datasize() 描述:估算当前数据库非压缩态的数据总容量 返回值类型:bigint 备注:(1)调用该函数前需要做analyze;(2)通过估算列存的压缩率计算非压缩态的数据总容量。 示例: 1 2 3 4 5 6 7 postgres=# analyze; ANALYZE postgres=# select get_db_source_datasize(); get_db_source_datasize ------------------------ 35384925667 (1 row) pg_relation_size(text) 描述:指定名称的表或者索引使用的磁盘空间。表名称可以用模式名修饰。 返回值类型:bigint pg_relation_size(relation regclass, fork text) 描述:指定表或索引的指定分叉树('main','fsm'或'vm')使用的磁盘空间。 返回值类型:bigint pg_relation_size(relation regclass) 描述:pg_relation_size(..., 'main')的简写。 返回值类型:bigint 备注:pg_relation_size接受一个表、索引、压缩表的OID或者名称,然后返回它们的字节大小。 pg_partition_size(oid,oid) 描述:指定OID代表的分区使用的磁盘空间。其中,第一个oid为表的OID,第二个oid为分区的OID。 返回值类型:bigint pg_partition_size(text, text) 描述:指定名称的分区使用的磁盘空间。其中,第一个text为表名,第二个text为分区名。 返回值类型:bigint pg_partition_indexes_size(oid,oid) 描述:指定OID代表的分区的索引使用的磁盘空间。其中,第一个oid为表的OID,第二个oid为分区的OID。 返回值类型:bigint pg_partition_indexes_size(text,text) 描述:指定名称的分区的索引使用的磁盘空间。其中,第一个text为表名,第二个text为分区名。 返回值类型:bigint pg_indexes_size(regclass) 描述:附加到指定表的索引使用的总磁盘空间。 返回值类型:bigint pg_size_pretty(bigint) 描述:将以64位整数表示的字节值转换为具有单位的易读格式。 返回值类型:text pg_size_pretty(numeric) 描述:将以数值表示的字节值转换为具有单位的易读格式。 返回值类型:text 备注:pg_size_pretty用于把其他函数的结果格式化成一种易读的格式,可以根据情况使用KB 、MB 、GB 、TB。 pg_table_size(regclass) 描述:指定的表使用的磁盘空间,不计索引(但是包含TOAST,自由空间映射和可见性映射)。 返回值类型:bigint pg_tablespace_size(oid) 描述:指定OID代表的表空间使用的磁盘空间。 返回值类型:bigint pg_tablespace_size(name) 描述:指定名称的表空间使用的磁盘空间。 返回值类型:bigint 备注: pg_tablespace_size接受一个数据库的OID或者名称,然后返回该对象使用的全部磁盘空间。 pg_total_relation_size(oid) 描述:指定OID代表的表使用的磁盘空间,包括索引和压缩数据。 返回值类型:bigint pg_total_relation_size(regclass) 描述:指定的表使用的总磁盘空间,包括所有的索引和TOAST数据。 返回值类型:bigint pg_total_relation_size(text) 描述:指定名称的表所使用的全部磁盘空间,包括索引和压缩数据。表名称可以用模式名修饰。 返回值类型:bigint 备注:pg_total_relation_size接受一个表或者一个压缩表的OID或者名称,然后返回以字节计的数据和所有相关的索引和压缩表的尺寸。 datalength(any) 描述:计算一个指定的数据需要的字节数(不考虑数据的管理空间和数据压缩,数据类型转换等情况)。 返回值类型:int 备注:datalength用于计算某个独立数据值的空间。 示例: postgres=# SELECT datalength(1); datalength ------------ 4 (1 row) 目前支持的数据类型及计算方式见下表: 数据类型 存储空间 数值类型 整数类型 TINYINT 1 SMALLINT 2 INTEGER 4 BINARY_INTEGER 4 BIGINT 8 任意精度型 DECIMAL 每4位十进制数占两个字节,小数点前后数字分别计算 NUMERIC 每4位十进制数占两个字节,小数点前后数字分别计算 NUMBER 每4位十进制数占两个字节,小数点前后数字分别计算 序列整型 SMALLSERIAL 2 SERIAL 4 BIGSERIAL 8 浮点类型 FLOAT4 4 DOUBLE PRECISION 8 FLOAT8 8 BINARY_DOUBLE 8 FLOAT[(p)] 每4位十进制数占两个字节,小数点前后数字分别计算 DEC[(p[,s])] 每4位十进制数占两个字节,小数点前后数字分别计算 INTEGER[(p[,s])] 每4位十进制数占两个字节,小数点前后数字分别计算 布尔类型 布尔类型 BOOLEAN 1 字符类型 字符类型 CHAR n CHAR(n) n CHARACTER(n) n NCHAR(n) n VARCHAR(n) n CHARACTER 字符实际字节数 VARYING(n) 字符实际字节数 VARCHAR2(n) 字符实际字节数 NVARCHAR2(n) 字符实际字节数 TEXT 字符实际字节数 CLOB 字符实际字节数 时间类型 时间类型 DATE 8 TIME 8 TIMEZ 12 TIMESTAMP 8 TIMESTAMPZ 8 SMALLDATETIME 8 INTERVAL DAY TO SECOND 16 INTERVAL 16 RELTIME 4 ABSTIME 4 TINTERVAL 12
  • 删除不再使用的帐户 当确认帐户不再使用,管理员可以删除帐户。该操作不可恢复。 当删除的用户正处于活动状态时,此会话状态不会立马断开,用户在会话状态断开后才会被完全删除。 以删除帐户joe为例,命令格式如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 postgres=# DROP USER joe CASCADE; DROP ROLE 当在多个用户多个数据库多个schema赋予权限的场景下,drop某个用户,由于该用户拥有其他用户赋予的权限,因此直接删除会产生如下报错。 postgres=# drop user test1 cascade; ERROR: role "test1" cannot be dropped because some objects depend on it 在这种场景只能通过查看系统表找到该用户被其他用户赋予的权限,并且登录该用户手动删除其赋予的权限,才能执行drop user,下面通过一个例子来详细讲解如何处理这种场景。 登录系统库,查看该用户的OID postgres=# select oid from pg_roles where rolname='test1'; oid ------- 16386 (1 row) 通过查看pg_shdepend 该视图来获取该用户被赋予的权限,可以看到该用户存在被其他用户赋予的两个权限,先处理第一个。 postgres=# select * from pg_shdepend where refobjid='16386'; dbid | classid | objid | objsubid | refclassid | refobjid | deptype | objfile -------+---------+-------+----------+------------+----------+---------+--------- 16394 | 826 | 16400 | 0 | 1260 | 16386 | a | 16394 | 2615 | 16399 | 0 | 1260 | 16386 | a | 查看pg_database 视图获取所在数据库,根据结果可知在test数据库。 postgres=# select * from pg_database where oid='16394' datname | datdba | encoding | datcollate | datctype | datistemplate | datallowconn | datconnlimit | datlastsysoid | datfrozenxid | dattablespace | datcompatibility | datacl | datfrozenxid64 ---------+--------+----------+-------------+-------------+---------------+--------------+--------------+---------------+--------------+---------------+------------------+-------------------------------------- -------------+---------------- test | 10 | 7 | en_US.UTF-8 | en_US.UTF-8 | f | t | -1 | 16268 | 1985 | 1663 | MYSQL | {=Tc/wangwei,wangwei=CTc/wangwei,admi n=c/wangwei} | 1985 (1 row) 登录到test数据库 [wangwei@euler_phy_194 postgres]$ gsql -p 3730 -d test gsql ((GaussDB Kernel V500R002C00 build 43ff9cd7) compiled at 2021-04-17 14:30:45 commit 0 last mr 330 debug) Non-SSL connection (SSL connection is recommended when requiring high-security) Type "help" for help. 通过pg_class 查看权限的类型,where条件的oid即是之前pg_shdepend 视图中查到的classid。 test=# select * from pg_class where oid = 826; relname | relnamespace | reltype | reloftype | relowner | relam | relfilenode | reltablespace | relpages | reltuples | relallvisible | reltoastrelid | reltoastidxid | reldeltarelid | reldeltaidx | rel cudescrelid | relcudescidx | relhasindex | relisshared | relpersistence | relkind | relnatts | relchecks | relhasoids | relhaspkey | relhasrules | relhastriggers | relhassubclass | relcmprs | relhasclusterkey | relrowmovement | parttype | relfrozenxid | relacl | reloptions | relreplident | relfrozenxid64 | relbucket | relbucketkey ----------------+--------------+---------+-----------+----------+-------+-------------+---------------+----------+-----------+---------------+---------------+---------------+---------------+-------------+---- ------------+--------------+-------------+-------------+----------------+---------+----------+-----------+------------+------------+-------------+----------------+----------------+----------+----------------- -+----------------+----------+--------------+--------------+------------+--------------+----------------+-----------+-------------- pg_default_acl | 11 | 11810 | 0 | 10 | 0 | 16063 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | t | f | p | r | 4 | 0 | t | f | f | f | f | 0 | f | f | n | 0 | {=r/wangwei} | | n | 1985 | | (1 row) 可以看到该用户被其他用户授予了表或者视图的ACL默认权限,查看pg_default_acl视图,oid即是之前pg_shdepend 中的查到的objid。 test=# select * from pg_default_acl oid = 16400;; defaclrole | defaclnamespace | defaclobjtype | defaclacl | oid ------------+-----------------+---------------+---------------------------------------+------- 16395 | 16399 | r | {wangwei=arwd/admin,test1=arwd/admin} | 16400 (1 row) 根据该视图的defaclacl字段可以看到,test1用户被admin用户赋予了默认权限,下一步我们需要找到具体授予权限的对象(哪个表或者视图)。 通过pg_namespace 查看对象的名字,其中oid即是pg_default_acl 中查到的defaclnamespace,通过视图可以看出test1用户被admin用户授予了schema test_schema_1的权限。 test=# select * from pg_namespace where oid = 16399; nspname | nspowner | nsptimeline | nspacl | in_redistribution | nspblockchain ---------------+----------+-------------+---------------------------------------+-------------------+--------------- test_schema_1 | 10 | 0 | {wangwei=UC/wangwei,admin=UC/wangwei} | n | f (1 row) 用admin登录test数据库,执行ALTER DEFAULT PRIVILEGES IN SCHEMA test_schema_1 revoke all privileges ON TABLES from test1;收回admin用户向test1赋予的scheme 默认权限。 test=# ALTER DEFAULT PRIVILEGES IN SCHEMA test_schema_1 revoke all privileges ON TABLES from test1; ALTER DEFAULT PRIVILEGES 下面处理第二个权限,登录系统库,查看pg_database 视图获取所在数据库,根据结果可知在test数据库。 postgres=# select * from pg_database where oid='16394' datname | datdba | encoding | datcollate | datctype | datistemplate | datallowconn | datconnlimit | datlastsysoid | datfrozenxid | dattablespace | datcompatibility | datacl | datfrozenxid64 ---------+--------+----------+-------------+-------------+---------------+--------------+--------------+---------------+--------------+---------------+------------------+-------------------------------------- -------------+---------------- test | 10 | 7 | en_US.UTF-8 | en_US.UTF-8 | f | t | -1 | 16268 | 1985 | 1663 | MYSQL | {=Tc/wangwei,wangwei=CTc/wangwei,admi n=c/wangwei} | 1985 (1 row) 登录到test数据库。 [wangwei@euler_phy_194 postgres]$ gsql -p 3730 -d test 查看视图pg_class ,其中oid即是pg_shdepend 表中的第二行的classid。 postgres=# select * from pg_class where oid='2615'; relname | relnamespace | reltype | reloftype | relowner | relam | relfilenode | reltablespace | relpages | reltuples | relallvisible | reltoastrelid | reltoastidxid | reldeltarelid | reldeltaidx | relcu descrelid | relcudescidx | relhasindex | relisshared | relpersistence | relkind | relnatts | relchecks | relhasoids | relhaspkey | relhasrules | relhastriggers | relhassubclass | relcmprs | relhasclusterkey | relrowmovement | parttype | relfrozenxid | relacl | reloptions | relreplident | relfrozenxid64 | relbucket | relbucketkey --------------+--------------+---------+-----------+----------+-------+-------------+---------------+----------+-----------+---------------+---------------+---------------+---------------+-------------+------ ----------+--------------+-------------+-------------+----------------+---------+----------+-----------+------------+------------+-------------+----------------+----------------+----------+------------------+ ----------------+----------+--------------+--------------+------------+--------------+----------------+-----------+-------------- pg_namespace | 11 | 11787 | 0 | 10 | 0 | 15947 | 0 | 1 | 20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | t | f | p | r | 6 | 0 | t | f | f | f | f | 0 | f | f | n | 0 | {=r/wangwei} | | n | 1985 | | (1 row) 根据结果可以看出是pg_namespace类型,查看pg_namespace系统视图,oid即是pg_shdepend 第二行objid。 test=# select * from pg_namespace where oid='16399'; nspname | nspowner | nsptimeline | nspacl | in_redistribution | nspblockchain ---------------+----------+-------------+-------------------------------------------------------+-------------------+--------------- test_schema_1 | 10 | 0 | {wangwei=UC/wangwei,admin=UC/wangwei,test1=U/wangwei} | n | f (1 row) 通过该视图的nspacl可以看出test1用户的test_schema_1 视图被权限被wangwei用户赋权,因此通过wangwei用户登录test库,执行revoke all on schema test_schema_1 from test1,回收赋予test1用户的权限。 test=# revoke all on schema test_schema_1 from test1; REVOKE 至此test1用户的被其他用户赋予的权限已经全部清除了,接下来只要执行drop user命令就可以了。 postgres=# drop user test1 cascade; DROP ROLE
  • 手动锁定和解锁帐户 若管理员发现某帐户被盗、非法访问等异常情况,可手动锁定该帐户。当管理员认为帐户恢复正常后,可手动解锁该帐户。 以手动锁定和解锁用户joe为例,用户的创建请参见用户,命令格式如下: 手动锁定 1 2 postgres=# ALTER USER joe ACCOUNT LOCK; ALTER ROLE 手动解锁 1 2 postgres=# ALTER USER joe ACCOUNT UNLOCK; ALTER ROLE
  • 自动锁定和解锁帐户 为了保证帐户安全,如果用户输入密码次数超过一定次数(failed_login_attempts),系统将自动锁定该帐户,默认值为10。次数设置越小越安全,但是在使用过程中会带来不便。 当帐户被锁定时间超过设定值(password_lock_time),则当前帐户自动解锁,默认值为1天。时间设置越长越安全,但是在使用过程中会带来不便。 参数password_lock_time的整数部分表示天数,小数部分可以换算成时、分、秒,如:password_lock_time=1.5,表示1天零12小时。 当failed_login_attempts设置为0时,表示不限制密码错误次数。当password_lock_time设置为0时,表示即使超过密码错误次数限制导致帐户锁定,也会在短时间内自动解锁。因此,只有两个配置参数都为正数时,才可以进行常规的密码失败检查、帐户锁定和解锁操作。 这两个参数的默认值都符合安全标准,用户可以根据需要重新设置参数,提高安全等级。建议用户使用默认值。 配置failed_login_attempts和password_lock_time参数的方法请参考用户指南。 由于配置对外提供接口服务的CN数量不同,数据库在帐户锁定上提供两种模式供用户选择: 单CN模式:集群部署时配置一个CN对外提供接口服务。 多CN模式:集群部署时配置多个CN对外提供接口服务。 安全模式下单CN具备帐户锁定机制。高并发模式下提供多个CN,每个节点都具备帐户锁定机制,但各个节点的帐户锁定信息并不共享,每个节点帐户锁定是独立裁定的,在高并发的需求下,用户可以选择此模式,但要控制CN个数,以控制密码暴力破解风险。另外各节点的自动解锁时间依据的是各节点操作系统的时钟,用户集群部署时要确保各集群节点时间同步保持一致性,可以使用NTP来配置,否则会有各节点帐户解锁时间不一致的风险。
  • 操作步骤 使用CREATE TABLE LIKE语句创建表customer_t的副本customer_t_copy。 1 postgres=# CREATE TABLE customer_t_copy (LIKE customer_t); 使用INSERT INTO…SELECT语句向副本填充原始表中的数据。 1 postgres=# INSERT INTO customer_t_copy (SELECT * FROM customer_t); 删除原始表。 1 postgres=# DROP TABLE customer_t; 使用ALTER TABLE语句将副本重命名为原始表名称。 1 postgres=# ALTER TABLE customer_t_copy RENAME TO customer_t;
  • 语法格式 FETCH [ direction { FROM | IN } ] cursor_name; 其中direction子句为可选参数。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NEXT | PRIOR | FIRST | LAST | ABSOLUTE count | RELATIVE count | count | ALL | FORWARD | FORWARD count | FORWARD ALL | BACKWARD | BACKWARD count | BACKWARD ALL
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 --SELECT语句,用一个游标读取一个表。开始一个事务。 postgres=# START TRANSACTION; --建立一个名为cursor1的游标。 postgres=# CURSOR cursor1 FOR SELECT * FROM tpcds.customer_address ORDER BY 1; --抓取头3行到游标cursor1里。 postgres=# FETCH FORWARD 3 FROM cursor1; ca_address_sk | ca_address_id | ca_street_number | ca_street_name | ca_street_type | ca_suite_number | ca_city | ca_county | ca_state | ca_zip | ca_country | ca_gmt_offset | ca_location_type ---------------+------------------+------------------+--------------------+-----------------+-----------------+-----------------+-----------------+----------+------------+---------------+---------------+---------------------- 1 | AAAAAAAABAAAAAAA | 18 | Jackson | Parkway | Suite 280 | Fairfield | Maricopa County | AZ | 86192 | United States | -7.00 | condo 2 | AAAAAAAACAAAAAAA | 362 | Washington 6th | RD | Suite 80 | Fairview | Taos County | NM | 85709 | United States | -7.00 | condo 3 | AAAAAAAADAAAAAAA | 585 | Dogwood Washington | Circle | Suite Q | Pleasant Valley | York County | PA | 12477 | United States | -5.00 | single family (3 rows) --关闭游标并提交事务。 postgres=# CLOSE cursor1; --结束一个事务。 postgres=# END; --VALUES子句,用一个游标读取VALUES子句中的内容。开始一个事务。 postgres=# START TRANSACTION; --建立一个名为cursor2的游标。 postgres=# CURSOR cursor2 FOR VALUES(1,2),(0,3) ORDER BY 1; --抓取头2行到游标cursor2里。 postgres=# FETCH FORWARD 2 FROM cursor2; column1 | column2 ---------+--------- 0 | 3 1 | 2 (2 rows) --关闭游标并提交事务。 postgres=# CLOSE cursor2; --结束一个事务。 postgres=# END; --WITH HOLD游标的使用,开启事务。 postgres=# START TRANSACTION; --创建一个with hold游标。 postgres=# DECLARE cursor1 CURSOR WITH HOLD FOR SELECT * FROM tpcds.customer_address ORDER BY 1; --抓取头2行到游标cursor1里。 postgres=# FETCH FORWARD 2 FROM cursor1; ca_address_sk | ca_address_id | ca_street_number | ca_street_name | ca_street_type | ca_suite_number | ca_city | ca_county | ca_state | ca_zip | ca_country | ca_gmt_offset | ca_location_type ---------------+------------------+------------------+--------------------+-----------------+-----------------+-----------------+-----------------+----------+------------+---------------+---------------+---------------------- 1 | AAAAAAAABAAAAAAA | 18 | Jackson | Parkway | Suite 280 | Fairfield | Maricopa County | AZ | 86192 | United States | -7.00 | condo 2 | AAAAAAAACAAAAAAA | 362 | Washington 6th | RD | Suite 80 | Fairview | Taos County | NM | 85709 | United States | -7.00 | condo (2 rows) --结束事务。 postgres=# END; --抓取下一行到游标cursor1里。 postgres=# FETCH FORWARD 1 FROM cursor1; ca_address_sk | ca_address_id | ca_street_number | ca_street_name | ca_street_type | ca_suite_number | ca_city | ca_county | ca_state | ca_zip | ca_country | ca_gmt_offset | ca_location_type ---------------+------------------+------------------+--------------------+-----------------+-----------------+-----------------+-----------------+----------+------------+---------------+---------------+---------------------- 3 | AAAAAAAADAAAAAAA | 585 | Dogwood Washington | Circle | Suite Q | Pleasant Valley | York County | PA | 12477 | United States | -5.00 | single family (1 row) --关闭游标。 postgres=# CLOSE cursor1;
  • 功能描述 FETCH通过已创建的游标来检索数据。 每个游标都有一个供FETCH使用的关联位置。游标的关联位置可以在查询结果的第一行之前,或者在结果中的任意行,或者在结果的最后一行之后: 游标刚创建完之后,关联位置在第一行之前的。 在抓取了一些移动行之后,关联位置在检索到的最后一行上。 如果FETCH抓取完了所有可用行,它就停在最后一行后面,或者在反向抓取的情况下是停在第一行前面。 FETCH ALL或FETCH BACKWARD ALL将总是把游标的关联位置放在最后一行或者在第一行前面。
  • 参数说明 direction_clause 定义抓取数据的方向。 取值范围: NEXT(缺省值) 从当前关联位置开始,抓取下一行。 PRIOR 从当前关联位置开始,抓取上一行。 FIRST 抓取查询的第一行(和ABSOLUTE 1相同)。 LAST 抓取查询的最后一行(和ABSOLUTE -1相同)。 ABSOLUTE count 抓取查询中第count行。 ABSOLUTE抓取不会比用相对位移移动到需要的数据行更快,因为下层的实现必须遍历所有中间的行。 count取值范围:有符号的整数 count为正数,就从查询结果的第一行开始,抓取第count行。当count小于当前游标位置时,涉及到rewind操作,暂不支持。 count为负数或0,涉及到反向扫描操作,暂不支持。 RELATIVE count 从当前关联位置开始,抓取随后或前面的第count行。 取值范围:有符号的整数 count为正数就抓取当前关联位置之后的第count行。 count为负数或0,涉及到反向扫描操作,暂不支持。 如果当前行没有数据的话,RELATIVE 0返回空。 count 抓取随后的count行(和FORWARD count一样)。 ALL 从当前关联位置开始,抓取所有剩余的行(和FORWARD ALL一样)。 FORWARD 抓取下一行(和NEXT一样)。 FORWARD count 与RELATIVE count的效果相同,从当前关联位置开始,抓取随后或前面的第count行。 FORWARD ALL 从当前关联位置开始,抓取所有剩余行。 BACKWARD 从当前关联位置开始,抓取前面一行(和PRIOR一样) 。 BACKWARD count 从当前关联位置开始,抓取前面的count行(向后扫描)。 取值范围:有符号的整数 count为正数就抓取当前关联位置之前的第count行。 count为负数就抓取当前关联位置之后的第abs(count)行。 如果有数据的话,BACKWARD 0重新抓取当前行。 BACKWARD ALL 从当前关联位置开始,抓取所有前面的行(向后扫描) 。 { FROM | IN } cursor_name 使用关键字FROM或IN指定游标名称。 取值范围:已创建的游标的名称。
  • 注意事项 如果游标定义了NO SCROLL,则不允许使用例如FETCH BACKWARD之类的反向抓取。 NEXT,PRIOR,FIRST,LAST,ABSOLUTE,RELATIVE形式在恰当地移动游标之后抓取一条记录。如果后面没有数据行,就返回一个空的结果,此时游标就会停在查询结果的最后一行之后(向后查询时)或者第一行之前(向前查询时)。 FORWARD和BACKWARD形式在向前或者向后移动的过程中抓取指定的行数,然后把游标定位在最后返回的行上;或者是,如果count大于可用的行数,则在所有行之后(向后查询时)或者之前(向前查询时)。 RELATIVE 0,FORWARD 0,BACKWARD 0都要求在不移动游标的前提下抓取当前行,也就是重新抓取最近刚抓取过的行。除非游标定位在第一行之前或者最后一行之后,这个动作都应该成功,而在那两种情况下,不返回任何行。 当FETCH的游标上涉及列存表时,不支持BACKWARD、PRIOR、FIRST等涉及反向获取操作。
  • 模式匹配操作符 数据库提供了三种独立的实现模式匹配的方法:SQL LIKE操作符、SIMILAR TO操作符和POSIX-风格的正则表达式。除了这些基本的操作符外,还有一些函数可用于提取或替换匹配子串并在匹配位置分离一个串。 LIKE 描述:判断字符串是否能匹配上LIKE后的模式字符串。如果字符串与提供的模式匹配,则LIKE表达式返回为真(NOT LIKE表达式返回假),否则返回为假(NOT LIKE表达式返回真)。 匹配规则: 此操作符只有在它的模式匹配整个串的时候才能成功。如果要匹配在串内任何位置的序列,该模式必须以百分号开头和结尾。 下划线 (_)代表(匹配)任何单个字符; 百分号(%)代表任意串的通配符。 要匹配文本里的下划线或者百分号,在提供的模式里相应字符必须前导逃逸字符。逃逸字符的作用是禁用元字符的特殊含义,缺省的逃逸字符是反斜线,也可以用ESCAPE子句指定一个不同的逃逸字符。 要匹配逃逸字符本身,写两个逃逸字符。例如要写一个包含反斜线的模式常量,那你就要在SQL语句里写两个反斜线。 参数standard_conforming_strings设置为off时,在文串常量中写的任何反斜线都需要被双写。因此,写一个匹配单个反斜线的模式实际上要在语句里写四个反斜线。(你可以通过用ESCAPE选择一个不同的逃逸字符来避免这种情况,这样反斜线就不再是LIKE的特殊字符了。但仍然是字符文本分析器的特殊字符,所以你还是需要两个反斜线。)我们也可以通过写ESCAPE ''的方式不选择逃逸字符,这样可以有效地禁用逃逸机制,但是没有办法关闭下划线和百分号在模式中的特殊含义。 关键字ILIKE可以用于替换LIKE,区别是LIKE大小写敏感,ILIKE大小写不敏感。 操作符~~等效于LIKE,操作符~~*等效于ILIKE。 示例: 1 2 3 4 5 postgres=# SELECT 'abc' LIKE 'abc' AS RESULT; result ----------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' LIKE 'a%' AS RESULT; result ----------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' LIKE '_b_' AS RESULT; result ----------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' LIKE 'c' AS RESULT; result ----------- f (1 row) SIMILAR TO 描述:SIMILAR TO操作符根据自己的模式是否匹配给定串而返回真或者假。他和LIKE非常类似,只不过他使用SQL标准定义的正则表达式理解模式。 匹配规则: 和LIKE一样,此操作符只有在它的模式匹配整个串的时候才能成功。如果要匹配在串内任何位置的序列,该模式必须以百分号开头和结尾。 下划线 (_)代表(匹配)任何单个字符; 百分号(%)代表任意串的通配符。 SIMILAR TO也支持下面这些从POSIX正则表达式借用的模式匹配元字符。 元字符 含义 | 表示选择(两个候选之一) * 表示重复前面的项零次或更多次 + 表示重复前面的项一次或更多次 ? 表示重复前面的项零次或一次 {m} 表示重复前面的项刚好m次 {m,} 表示重复前面的项m次或更多次 {m,n} 表示重复前面的项至少m次并且不超过n次 () 把多个项组合成一个逻辑项 [...] 声明一个字符类,就像POSIX正则表达式一样 前导逃逸字符可以禁止所有这些元字符的特殊含义。逃逸字符的使用规则和LIKE一样。 正则表达式函数: 支持使用函数•substring(string from pattern for escape)截取匹配SQL正则表达式的子字符串。 示例: 1 2 3 4 5 postgres=# SELECT 'abc' SIMILAR TO 'abc' AS RESULT; result ----------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' SIMILAR TO 'a' AS RESULT; result ----------- f (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' SIMILAR TO '%(b|d)%' AS RESULT; result ----------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' SIMILAR TO '(b|c)%' AS RESULT; result ----------- f (1 row) POSIX正则表达式 描述:正则表达式是一个字符序列,它是定义一个串集合 (一个正则集)的缩写。 如果一个串是正则表达式描述的正则集中的一员时, 我们就说这个串匹配该正则表达式。 POSIX正则表达式提供了比LIKE和SIMILAR TO操作符更强大的含义。表 1 正则表达式匹配操作符列出了所有可用于POSIX正则表达式模式匹配的操作符。 表1 正则表达式匹配操作符 操作符 描述 例子 ~ 匹配正则表达式,大小写敏感 'thomas' ~ '.*thomas.*' ~* 匹配正则表达式,大小写不敏感 'thomas' ~* '.*Thomas.*' !~ 不匹配正则表达式,大小写敏感 'thomas' !~ '.*Thomas.*' !~* 不匹配正则表达式,大小写不敏感 'thomas' !~* '.*vadim.*' 匹配规则: 与LIKE不同,正则表达式允许匹配串里的任何位置,除非该正则表达式显式地挂接在串的开头或者结尾。 除了上文提到的元字符外, POSIX正则表达式还支持下列模式匹配元字符。 元字符 含义 ^ 表示串开头的匹配 $ 表示串末尾的匹配 . 匹配任意单个字符 正则表达式函数: POSIX正则表达式支持下面函数。 substring(string from pattern)函数提供了抽取一个匹配POSIX正则表达式模式的子串的方法。 regexp_replace(string, pattern, replacement [,flags ])函数提供了将匹配POSIX正则表达式模式的子串替换为新文本的功能。 regexp_matches(string text, pattern text [, flags text])函数返回一个文本数组,该数组由匹配一个POSIX正则表达式模式得到的所有被捕获子串构成。 regexp_split_to_table(string text, pattern text [, flags text])函数把一个POSIX正则表达式模式当作一个定界符来分离一个串。 regexp_split_to_array(string text, pattern text [, flags text ])和regexp_split_to_table类似,是一个正则表达式分离函数,不过它的结果以一个text数组的形式返回。 正则表达式分离函数会忽略零长度的匹配,这种匹配发生在串的开头或结尾或者正好发生在前一个匹配之后。这和正则表达式匹配的严格定义是相悖的,后者由regexp_matches实现,但是通常前者是实际中最常用的行为。 示例: 1 2 3 4 5 postgres=# SELECT 'abc' ~ 'Abc' AS RESULT; result -------- f (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' ~* 'Abc' AS RESULT; result -------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' !~ 'Abc' AS RESULT; result -------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc'!~* 'Abc' AS RESULT; result -------- f (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' ~ '^a' AS RESULT; result -------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' ~ '(b|d)'AS RESULT; result -------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'abc' ~ '^(b|c)'AS RESULT; result -------- f (1 row) 虽然大部分的正则表达式搜索都能很快地执行,但是正则表达式仍可能被人为地弄成需要任意长的时间和任意量的内存进行处理。不建议从非安全模式来源接受正则表达式搜索模式,如果必须这样做,建议加上语句超时限制。使用SIMILAR TO模式的搜索具有同样的安全性危险, 因为SIMILAR TO提供了很多和POSIX-风格正则表达式相同的能力。LIKE搜索比其他两种选项简单得多,因此在接受非安全模式来源搜索时要更安全些。 父主题: 函数和操作符
  • 基本文本匹配 GaussDB的全文检索基于匹配算子@@,当一个tsvector(document)匹配到一个tsquery(query)时,则返回true。其中,tsvector(document)和tsquery(query)两种数据类型可以任意排序。 1 2 3 4 5 postgres=# SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery AS RESULT; result ---------- t (1 row) 1 2 3 4 5 postgres=# SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector AS RESULT; result ---------- f (1 row) 正如上面例子表明,tsquery不仅是文本,且比tsvector包含的要多。tsquery包含已经标注化为词条的搜索词,同时可能是使用AND、OR、或NOT操作符连接的多个术语。详细请参见文本搜索类型。函数to_tsquery和plainto_tsquery对于将用户书写文本转换成适合的tsquery是非常有用的,比如将文本中的词标准化。类似地,to_tsvector用于解析和标准化文档字符串。因此,实际中文本搜索匹配看起来更像这样: 1 2 3 4 5 postgres=# SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat') AS RESULT; result ---------- t (1 row) 需要注意的是,下面这种方式是不可行的: 1 2 3 4 5 postgres=# SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat')AS RESULT; result ---------- f (1 row) 由于tsvector没有对rats进行标准化,所以rats不匹配rat。 @@操作符也支持text输入,允许一个文本字符串的显示转换为tsvector或者在简单情况下忽略tsquery。可用形式是: 1 2 3 4 tsvector @@ tsquery tsquery @@ tsvector text @@ tsquery text @@ text 我们已经看到了前面两种,形式text @@ tsquery等价于to_tsvector(text) @@ tsquery,而text @@ text等价于to_tsvector(text) @@ plainto_tsquery(text)。 父主题: 介绍
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 --创建外部表。 postgres=# CREATE FOREIGN TABLE tpcds.customer_ft ( c_customer_sk integer , c_customer_id char(16) , c_current_cdemo_sk integer , c_current_hdemo_sk integer , c_current_addr_sk integer , c_first_shipto_date_sk integer , c_first_sales_date_sk integer , c_salutation char(10) , c_first_name char(20) , c_last_name char(30) , c_preferred_cust_flag char(1) , c_birth_day integer , c_birth_month integer , c_birth_year integer , c_birth_country varchar(20) , c_login char(13) , c_email_address char(50) , c_last_review_date char(10) ) SERVER gsmpp_server OPTIONS ( location 'gsfs://10.185.179.143:5000/customer1*.dat', FORMAT 'TEXT' , DELIMITER '|', encoding 'utf8', mode 'Normal') READ ONLY; --修改外表属性,删除mode选项。 postgres=# ALTER FOREIGN TABLE tpcds.customer_ft options(drop mode); --删除外部表。 postgres=# DROP FOREIGN TABLE tpcds.customer_ft;
  • 语法格式 设置外表属性 1 2 ALTER FOREIGN TABLE [ IF EXISTS ] table_name OPTIONS ( {[ ADD | SET | DROP ] option ['value']}[, ... ]); 设置新的所有者 1 2 ALTER FOREIGN TABLE [ IF EXISTS ] tablename OWNER TO new_owner;
  • 优化建议 UNLOGGED UNLOGGED表和表上的索引因为数据写入时不通过WAL日志机制,写入速度远高于普通表。因此,可以用于缓冲存储复杂查询的中间结果集,增强复杂查询的性能。 UNLOGGED表无主备机制,在系统故障或异常断点等情况下,会有数据丢失风险,因此,不可用来存储基础数据。 TEMPORARY | TEMP 临时表只在当前会话可见,会话结束后会自动删除。 除了当前CN外,其他CN对于该临时表不可见。 LIKE 新表自动从这个表中继承所有字段名及其数据类型和非空约束,新表与源表之间在创建动作完毕之后是完全无关的。 LIKE INCLUDING DEFAULTS 源表上的字段缺省表达式只有在指定INCLUDING DEFAULTS时,才会复制到新表中。缺省是不包含缺省表达式的,即新表中的所有字段的缺省值都是NULL。 LIKE INCLUDING CONSTRAINTS 源表上的CHECK约束仅在指定INCLUDING CONSTRAINTS时,会复制到新表中,而其他类型的约束永远不会复制到新表中。非空约束总是复制到新表中。此规则同时适用于表约束和列约束。 LIKE INCLUDING INDEXES 如果指定了INCLUDING INDEXES,则源表上的索引也将在新表上创建,默认不建立索引。 LIKE INCLUDING STORAGE 如果指定了INCLUDING STORAGE,则复制列的STORAGE设置会复制到新表中,默认情况下不包含STORAGE设置。 LIKE INCLUDING COMMENTS 如果指定了INCLUDING COMMENTS,则源表列、约束和索引的注释会复制到新表中。默认情况下,不复制源表的注释。 LIKE INCLUDING PARTITION 如果指定了INCLUDING PARTITION,则源表的分区定义会复制到新表中,同时新表将不能再使用PARTITION BY子句。默认情况下,不拷贝源表的分区定义。 LIKE INCLUDING RELOPTIONS 如果指定了INCLUDING RELOPTIONS,则源表的存储参数(即源表的WITH子句)会复制到新表中。默认情况下,不复制源表的存储参数。 LIKE INCLUDING DISTRIBUTION 如果指定了INCLUDING DISTRIBUTION,则源表的分布信息会复制到新表中,包括分布类型和分布列,同时新表将不能再使用DISTRIBUTE BY子句。默认情况下,不拷贝源表的分布信息。 LIKE INCLUDING ALL INCLUDING ALL包含了INCLUDING DEFAULTS、INCLUDING CONSTRAINTS、INCLUDING INDEXES、INCLUDING STORAGE、INCLUDING COMMENTS、INCLUDING PARTITION、INCLUDING RELOPTIONS和INCLUDING DISTRIBUTION的内容。 ORIENTATION ROW 创建行存表,行存储适合于OLTP业务,此类型的表上交互事务比较多,一次交互会涉及表中的多个列,用行存查询效率较高。 ORIENTATION COLUMN 创建列存表,列存储适合于数据仓库业务,此类型的表上会做大量的汇聚计算,且涉及的列操作较少。 DISTRIBUTE BY 事实表或者数据量较大的维度表建议创建为分布表。对指定的列进行Hash,通过映射,把数据分布到指定DN。语法为:distribute by hash(column_name)。 数据量较小的维度表建议创建为复制表。表的每条记录存在所有数据节点(DN)中,即每个数据节点都有完整的表数据。语法为: distribute by replication。
  • 注意事项 列存表支持的数据类型请参考列存表支持的数据类型。 创建列存的数量建议不超过1000个。 表中的主键约束和唯一约束必须包含分布列。 分布列不支持更新(UPDATE)操作。 如果在建表过程中数据库系统发生故障,系统恢复后可能无法自动清除之前已创建的、大小为0的磁盘文件。此种情况出现概率小,不影响数据库系统的正常运行。 列存表的表级约束只支持PARTIAL CLUSTER KEY,不支持主外键等表级约束。 列存表的字段约束只支持NULL、NOT NULL和DEFAULT常量值。 列存表支持delta表,受参数enable_delta_store控制是否开启,受参数deltarow_threshold控制进入delta表的阀值。 使用JDBC时,支持通过PrepareStatement对DEFAUTL值进行参数化设置。 行存表的表级约束不支持外键。 依据并发控制策略,drop table if exist和create if exist操作相同的表并发场景时,有一个会回滚。
  • 语法格式 创建表。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CREATE [ [ GLOBAL | LOCAL ] [ TEMPORARY | TEMP ] | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name ({ column_name data_type [ compress_mode ] [ COLLATE collation ] [ column_constraint [ ... ] ] | table_constraint | LIKE source_table [ like_option [...] ] } [, ... ]) [ WITH ( {storage_parameter = value} [, ... ] ) ] [ ON COMMIT { PRESERVE ROWS | DELETE ROWS } ] [ COMPRESS | NOCOMPRESS ] [ TABLESPACE tablespace_name ] [ DISTRIBUTE BY { REPLICATION | HASH ( column_name [, ...] ) | RANGE ( column_name [, ...] ) { SLICE REFERENCES tablename | ( slice_less_than_item [, ...] ) | ( slice_start_end_item [, ...] ) } | LIST ( column_name [, ...] ) { SLICE REFERENCES tablename | ( slice_values_item [, ...] ) } } ] [ TO { GROUP groupname | NODE ( nodename [, ... ] ) } ]; 其中列约束column_constraint为: 1 2 3 4 5 6 7 8 9 [ CONSTRAINT constraint_name ] { NOT NULL | NULL | CHECK ( expression ) | DEFAULT default_expr | UNIQUE [ index_parameters ] | PRIMARY KEY [ index_parameters ] | ENCRYPTED WITH ( COLUMN_ENCRYPTION_KEY = column_encryption_key, ENCRYPTION_TYPE = encryption_type_value)} [ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] 其中列的压缩可选项compress_mode为: 1 { DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS } 其中表约束table_constraint为: 1 2 3 4 5 6 [ CONSTRAINT constraint_name ] { CHECK ( expression ) | UNIQUE ( column_name [, ... ] ) [ index_parameters ] | PRIMARY KEY ( column_name [, ... ] ) [ index_parameters ] | PARTIAL CLUSTER KEY ( column_name [, ... ] ) } [ DEFERRABLE | NOT DEFERRABLE ][ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] 其中like选项like_option为: 1 { INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | PARTITION | RELOPTIONS | DISTRIBUTION | ALL } 其中RANGE分布规则 slice_less_than_item为: SLICE slice_name VALUES LESS THAN ({ literal | MAXVALUE } [, ...]) [ DATANODE dn_name ] slice_start_end_item为: SLICE slice_name_prefix { { START ( literal ) END ( literal ) EVERY ( literal ) } | { START ( literal ) END ( { literal | MAXVALUE } ) } | { START ( literal ) } | { END ( { literal | MAXVALUE } ) } } 其中LIST分布规则slice_values_item为: SLICE slice_name VALUES (list_values_item) [DATANODE dn_name] list_values_item为: { DEFAULT | { partition_values_list [, ...] } } partition_values_list为: { (literal [, ...]) } 其中索引参数index_parameters为: 1 2 [ WITH ( {storage_parameter = value} [, ... ] ) ] [ USING INDEX TABLESPACE tablespace_name ]
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 --创建文本搜索配置。 postgres=# CREATE TEXT SEARCH CONFIGURATION english_1 (parser=default); CREATE TEXT SEARCH CONFIGURATION --增加文本搜索配置字串类型映射语法。 postgres=# ALTER TEXT SEARCH CONFIGURATION english_1 ADD MAPPING FOR word WITH simple,english_stem; ALTER TEXT SEARCH CONFIGURATION --增加文本搜索配置字串类型映射语法。 postgres=# ALTER TEXT SEARCH CONFIGURATION english_1 ADD MAPPING FOR email WITH english_stem, french_stem; ALTER TEXT SEARCH CONFIGURATION --查询文本搜索配置相关信息。 postgres=# SELECT b.cfgname,a.maptokentype,a.mapseqno,a.mapdict,c.dictname FROM pg_ts_config_map a,pg_ts_config b, pg_ts_dict c WHERE a.mapcfg=b.oid AND a.mapdict=c.oid AND b.cfgname='english_1' ORDER BY 1,2,3,4,5; cfgname | maptokentype | mapseqno | mapdict | dictname -----------+--------------+----------+---------+-------------- english_1 | 2 | 1 | 3765 | simple english_1 | 2 | 2 | 12960 | english_stem english_1 | 4 | 1 | 12960 | english_stem english_1 | 4 | 2 | 12964 | french_stem (4 rows) --增加文本搜索配置字串类型映射语法。 postgres=# ALTER TEXT SEARCH CONFIGURATION english_1 ALTER MAPPING REPLACE french_stem with german_stem; ALTER TEXT SEARCH CONFIGURATION --查询文本搜索配置相关信息。 postgres=# SELECT b.cfgname,a.maptokentype,a.mapseqno,a.mapdict,c.dictname FROM pg_ts_config_map a,pg_ts_config b, pg_ts_dict c WHERE a.mapcfg=b.oid AND a.mapdict=c.oid AND b.cfgname='english_1' ORDER BY 1,2,3,4,5; cfgname | maptokentype | mapseqno | mapdict | dictname -----------+--------------+----------+---------+-------------- english_1 | 2 | 1 | 3765 | simple english_1 | 2 | 2 | 12960 | english_stem english_1 | 4 | 1 | 12960 | english_stem english_1 | 4 | 2 | 12966 | german_stem (4 rows) 请参见CREATE TEXT SEARCH CONFIGURATION的示例。
  • 语法格式 增加文本搜索配置字串类型映射语法 1 2 ALTER TEXT SEARCH CONFIGURATION name ADD MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ]; 修改文本搜索配置字典语法 1 2 ALTER TEXT SEARCH CONFIGURATION name ALTER MAPPING FOR token_type [, ... ] REPLACE old_dictionary WITH new_dictionary; 修改文本搜索配置字串类型语法 1 2 ALTER TEXT SEARCH CONFIGURATION name ALTER MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ]; 更改文本搜索配置字典语法 1 2 ALTER TEXT SEARCH CONFIGURATION name ALTER MAPPING REPLACE old_dictionary WITH new_dictionary; 删除文本搜索配置字串类型映射语法 1 2 ALTER TEXT SEARCH CONFIGURATION name DROP MAPPING [ IF EXISTS ] FOR token_type [, ... ]; 重命名文本搜索配置所有者语法 1 ALTER TEXT SEARCH CONFIGURATION name OWNER TO new_owner; 重命名文本搜索配置名称语法 1 ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name; 重命名文本搜索配置命名空间语法 1 ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema; 修改文本搜索配置属性语法 1 ALTER TEXT SEARCH CONFIGURATION name SET ( { configuration_option = value } [, ...] ); 重置文本搜索配置属性语法 1 ALTER TEXT SEARCH CONFIGURATION name RESET ( {configuration_option} [, ...] );
  • 参数说明 name 已有文本搜索配置的名称(可以有模式修饰)。 token_type 与配置的语法解析器关联的字串类型的名称。详细信息参见解析器。 dictionary_name 文本搜索字典名称。 如果有多个字典,则它们会按指定的顺序搜索。 old_dictionary 映身中拟被替换的文本搜索字典名称。 new_dictionary 替换old_dictionary的文本搜索字典的名称。 new_owner 文本搜索配置的新所有者。 new_name 文本搜索配置的新名称。 new_schema 文本搜索配置的新模式名。 configuration_option 文本搜索配置项。详细信息参见CREATE TEXT SEARCH CONFIGURATION。 value 文本搜索配置项的值。
  • 功能描述 更改文本搜索配置的定义。用户可以将映射从字串类型调整为字典,或者改变配置的名称或者所有者,或者修改搜索配置的配置参数。 ADD MAPPING FOR选项为文本搜索配置增加字串类型映射;如果ADD MAPPING FOR后面任何一个字串类型的映射已经存在于此文本搜索配置中,那么系统将会报错。 ALTER MAPPING FOR选项会首先清除已有的字串类型映射,然后添加指定的字串类型映射。 ALTER MAPPING REPLACE ... WITH ... 与ALTER MAPPING FOR ... REPLACE ... WITH ...选项会直接使用new_dictionary替换old_dictionary。需要注意的是,只有pg_ts_config_map系统表中存在maptokentype与old_dictionary对应关系的元组时,才能更新成功,否则不会成功,也不会有任何提示信息返回。 DROP MAPPING FOR选项会删除当前文本搜索配置中指定的字串类型映射。 如果没有指定IF EXISTS选项,当DROP MAPPING FOR选项指定的字串类型映射在文本搜索配置中不存在时,数据库会报错。
  • 定时任务管理 创建测试表: 1 postgres=# CREATE TABLE test(id int, time date); 当结果显示为如下信息,则表示创建成功。 1 CREATE TABLE 创建自定义存储过程: 1 2 3 4 5 6 7 8 9 postgres=# CREATE OR REPLACE PROCEDURE PRC_JOB_1() AS N_NUM integer :=1; BEGIN FOR I IN 1..1000 LOOP INSERT INTO test VALUES(I,SYSDATE); END LOOP; END; / 当结果显示为如下信息,则表示创建成功。 1 CREATE PROCEDURE 创建任务: 新创建的任务(未指定job_id)表示每隔1分钟执行一次存储过程PRC_JOB_1。 1 2 3 4 5 postgres=# call dbe_task.submit('call public.prc_job_1(); ', sysdate, 'interval ''1 minute''', :a); job ----- 1 (1 row) 指定job_id创建任务,其中job_id可用范围为1~32767。 1 2 3 4 5 postgres=# call dbe_task.id_submit(2,'call public.prc_job_1(); ', sysdate, 'interval ''1 minute'''); isubmit --------- (1 row) 通过视图查看当前用户已创建的任务信息。 1 2 3 4 5 postgres=# select job,dbname,start_date,last_date,this_date,next_date,broken,status,interval,failures,what from my_jobs; job | dbname | start_date | last_date | this_date | next_date | broken | status | interval | failures | what -----+--------+---------------------+----------------------------+----------------------------+---------------------+--------+--------+---------------------+----------+--------------------------- 1 | postgres | 2017-07-18 11:38:03 | 2017-07-18 13:53:03.607838 | 2017-07-18 13:53:03.607838 | 2017-07-18 13:54:03 | n | s | interval '1 minute' | 0 | call public.prc_job_1(); (1 row) 停止任务。 1 2 3 4 5 postgres=# call dbe_task.finish(1,true); broken -------- (1 row) 启动任务。 1 2 3 4 5 postgres=# call dbe_task.finish(1,false); broken -------- (1 row) 修改任务属性: 修改JOB的Next_date参数信息。 --修改Job1的Next_date为1小时以后开始执行。 1 2 3 4 5 postgres=# call dbe_task.next_time(1, sysdate+1.0/24); next_date ----------- (1 row) 修改JOB的Interval参数信息。 --修改Job1的Interval为每隔1小时执行一次。 1 2 3 4 5 postgres=# call dbe_task.interval(1,'sysdate + 1.0/24'); interval ---------- (1 row) 修改JOB的What参数信息。 --修改Job1的What为执行SQL语句“insert into public.test values(333, sysdate+5);”。 1 2 3 4 5 postgres=# call dbe_task.content(1,'insert into public.test values(333, sysdate+5);'); what ------ (1 row) 同时修改JOB的Next_date、Interval、What等多个参数信息。 1 2 3 4 5 postgres=# call dbe_task.update(1, 'call public.prc_job_1();', sysdate, 'interval ''1 minute'''); change -------- (1 row) 删除JOB。 1 2 3 4 5 postgres=# call dbe_task.cancel(1); remove -------- (1 row) 查看JOB执行情况。 当JOB自动执行时,如果JOB执行失败(即job_status状态值为'f')时,用户可以通过查看当前JOB所属CN的数据目录的pg_log子目录下对应时间点的运行日志来查看JOB的失败信息。 日志信息如下所示,从失败信息(detail error msg)中可以查看失败的具体错误。 LOG: Execute Job Detail: job_id: 1 what: call public.test(); start_date: 2017-07-19 23:30:47.401818 job_status: failed detail error msg: relation "test" does not exist end_date: 2017-07-19 23:30:47.401818 next_run_date: 2017-07-19 23:30:56.855827 JOB的权限控制: 当创建一个JOB时,该JOB会和创建该JOB的数据库和用户绑定(即:pg_job系统表新增的JOB记录中的dbname和log_user)。 如果当前用户是DBA用户、系统管理员、该JOB的创建用户(即:pg_job中的log_user),那么该用户有权限通过高级包接口remove、change、next_data、what、interval删除或修改JOB的参数信息。否则,会提示当前用户没有权限操作该JOB。 如果当前数据库是该JOB创建所属的数据库(即:为pg_job系统表中的dbname),那么连接到当前数据库上可以通过高级包接口cancel、update、next_data、content、interval删除或修改JOB的参数信息。 当删除JOB所属的数据库(即:为pg_job系统表中的dbname)时,系统会关联删除该数据库从属的JOB记录。 当删除JOB所属的用户(即:为pg_job系统表中的log_user)时,系统会关联删除该用户从属的JOB记录。 JOB的并发控制管理。 用户可以通过配置参数job_queue_processes来调整并发同时执行的JOB数目。 当job_queue_processes设置为0值,表示不启用定时任务功能,任何job都不会被执行。 当job_queue_processes为大于0时,表示启用定时任务功能且系统能够并发处理的最大任务数。 由于并行运行的任务数太多会消耗更多的系统资源,因此需要设置系统并发处理的任务数,当前并发的任务数达到job_queue_processes时,且此时又有任务到期,那么这些任务本次得不到执行而延期到下一轮询周期。因此,建议用户需要根据每个任务的执行时长合理的设置任务的时间间隔(即submit接口中的interval参数),来避免由于任务执行时间太长而导致下个轮询周期无法正常执行。 注:对于不使用JOB的集群中,用户可以通过在集群安装初始化完成后,通过设置job_queue_processes为0来关闭JOB功能,减少系统资源的消耗。
  • 背景信息 当用户在使用数据库过程中,如果白天执行一些耗时比较长的任务(例如:统计数据汇总之类或从其他数据库同步数据的任务),会对正常的业务有性能影响,所以用户经常选择在晚上执行,这增加了用户的工作量。因此数据库GaussDB提供定时任务的功能,可以由用户创建定时任务,当任务时间点到达后可以自动触发任务的执行,从而可以减少用户户运维的工作量。↵ GaussDB提供定时任务的创建、任务到期自动执行、任务删除、修改任务属性(包括:任务id、任务的关闭开启、任务的触发时间、触发时间间隔、任务内容等)。
  • 服务器信号函数 服务器信号函数向其他服务器进程发送控制信号。只有系统管理员才能使用这些函数。 pg_cancel_backend(pid int) 描述:取消一个后端的当前查询。 返回值类型:Boolean 备注:pg_cancel_backend向由pid标识的后端进程发送一个查询取消(SIGINT)信号。一个活动的后端进程的PID可以从pg_stat_activity视图的pid字段找到,或者在服务器上用ps列出数据库进程。 pg_cancel_invalid_query() 描述:取消一个后端的无效查询。 返回值类型:Boolean 备注:只有系统管理员才有权限取消连接到降级的GTM的后端中运行的查询。 pg_reload_conf() 描述:导致所有服务器进程重新装载它们的配置文件。 返回值类型:Boolean 备注:pg_reload_conf给服务器发送一个SIGHUP信号,导致所有服务器进程重新装载配置文件。 pg_rotate_logfile() 描述:滚动服务器的日志文件。 返回值类型:Boolean 备注:pg_rotate_logfile给日志文件管理器发送信号,告诉它立即切换到一个新的输出文件。这个函数只有在redirect_stderr用于日志输出的时候才有用,否则根本不存在日志文件管理器子进程。 pg_terminate_session(pid bigint, sessionid bigint) 描述:终止一个后台会话。 返回值类型:Boolean 备注:本函数的入参可以通过pg_stat_activity中的pid字段和sessionid的字段查询。可以用于清理线程池模式下,非活跃状态的会话。 pg_terminate_backend(pid int) 描述:终止一个后台线程。仅系统管理员和线程所有者可执行该函数。 返回值类型:Boolean 备注:如果成功,函数返回true,否则返回false。 示例: 1 2 3 4 5 6 7 8 9 10 11 postgres=# SELECT pid from pg_stat_activity; pid ----------------- 140657876268816 (1 rows) postgres=# SELECT pg_terminate_backend(140657876268816); pg_terminate_backend ---------------------- t (1 row) 父主题: 系统管理函数
  • 背景信息 GDS支持在x86/ARM平台如下的操作系统中安装:EulerOS 2.5/2.8。 GDS的版本需与集群版本保持一致,否则可能会出现导入导出失败或导入导出进程停止响应等情况。 因此请勿使用历史版本的GDS进行导入。数据库版本升级后,请按照操作步骤中的办法下载新版本的GDS进行安装配置和启动。在导入导出开始时,GaussDB也会进行两端的版本一致性检测,不一致时会打屏显示报错信息并终止对应操作。 GDS的版本号的查看办法为:在GDS工具的解压目录下执行如下命令。 gds -V 数据库版本的查看办法为:连接数据库后,执行如下SQL命令查看。 1 SELECT version();
  • gds.conf参数说明 表1 gds.conf配置说明 属性 说明 取值范围 name 标识名。 - ip 侦听ip地址。 IP需为合法IP地址。 IP的默认值:127.0.0.1 port 侦听端口号。 取值范围:1024~65535,正整数。 默认值:8098。 data_dir 数据文件目录。 - err_dir 错误日志文件目录。 默认值:数据文件目录 log_file 日志文件路径。 - host 设置允许连接到GDS的主机IP地址(参数为CIDR格式,仅支持linux系统)。 - recursive 是否递归数据文件目录。 取值范围: true:递归 。 false:不递归。 默认值:false。 daemon 是否以DAEMON(后台)模式运行。 取值范围: true:以DAEMON模式运行。 false:不以DAEMON模式运行。 默认值:false。 parallel 导入工作线程并发数目。 取值范围:0~32,正整数。 默认值:1。
  • 参数 表1 SQLFreeHandle参数 关键字 参数说明 HandleType SQLFreeHandle要释放的句柄类型。必须为下列值之一: SQL_HANDLE_ENV SQL_HANDLE_DBC SQL_HANDLE_STMT SQL_HANDLE_DESC 如果HandleType不是这些值之一,SQLFreeHandle返回SQL_INVALID_HANDLE。 Handle 要释放的句柄。
  • 参数 表1 SQLGetData参数 关键字 参数说明 StatementHandle 语句句柄,通过SQLAllocHandle获得。 Col_or_Param_Num 要返回数据的列号。结果集的列按增序从1开始编号。书签列的列号为0。 TargetType TargetValuePtr缓冲中的C数据类型的类型标识符。若TargetType为SQL_ARD_TYPE,驱动使用ARD中SQL_DESC_CONCISE_TYPE字段的类型标识符。若为SQL_C_DEFAULT,驱动根据源的SQL数据类型选择缺省的数据类型。 TargetValuePtr 输出参数:指向返回数据所在缓冲区的指针。 BufferLength TargetValuePtr所指向缓冲区的长度。 StrLen_or_IndPtr 输出参数:指向缓冲区的指针,在此缓冲区中返回长度或标识符的值。
  • 原型 1 2 3 4 5 6 SQLRETURN SQLGetData(SQLHSTMT StatementHandle, SQLUSMALLINT Col_or_Param_Num, SQLSMALLINT TargetType, SQLPOINTER TargetValuePtr, SQLLEN BufferLength, SQLLEN *StrLen_or_IndPtr);
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 --创建存储过程proc_staffs openGauss=# CREATE OR REPLACE PROCEDURE proc_staffs ( section NUMBER(6), salary_sum out NUMBER(8,2), staffs_count out INTEGER ) IS BEGIN SELECT sum(salary), count(*) INTO salary_sum, staffs_count FROM hr.staffs where section_id = section; END; / --调用存储过程proc_return. openGauss=# CALL proc_staffs(2,8,6); --清除存储过程 openGauss=# DROP PROCEDURE proc_staffs;
共100000条