华为云用户手册

  • 操作步骤 在GaussDB中创建目标表,用于存储导入的数据。建表语句请参见CREATE TABLE。 (可选)若导入表存在索引,在数据导入过程中,将增量更新索引信息,影响数据导入性能。建议在执行数据导入前,先删除相关表的索引。在数据导入完成后,再重新创建索引。 假定在导入表“product_info”上的“product_id”字段上存在普通索引“product_idx”。在执行数据导入前,请先删除相关索引。 1 postgres=# DROP INDEX product_idx; 在数据导入完成后,重建索引。 1 postgres=# CREATE INDEX product_idx ON product_info(product_id); 打开enable_stream_operator。 1 postgres=# set enable_stream_operator=on; 在重建索引过程中,用户可以通过临时增加GUC参数“maintenance_work_mem”/“psort_work_mem”来加快索引的重建。 执行数据导入。 1 postgres=# INSERT INTO [目标表名] SELECT * FROM [foreign table 表名]; 若出现以下类似信息,说明数据导入成功。请查询错误信息表,查看是否存在数据格式错误,详细操作请参见处理错误表。 INSERT 0 9 若出现数据加载错误,请参见处理错误表,并重新执行数据导入。 若执行过程中出现数据加载错误,则数据全部导入失败,没有数据导入至目标表中。 编写批处理任务脚本,实现并发批量导入数据。并发量视机器资源使用情况而定。可通过几个表测试,监控资源利用率,根据结果提高或减少并发量。常用资源监控命令有:内存和CPU监控top命令,IO监控命令iostat,网络监控命令sar等。相关案例请参见示例:多线程导入。 在资源许可的情况下,多台GDS服务器并发导入会很大程度上提高数据导入效率。相关案例请参见示例:多数据服务器并行导入。 对于高并发的GDS导入场景,为了保持GDS和DN间的数据连接稳定,可以将GDS服务器环境和DN所在环境的TCP Keepalive检测时间增长(推荐增长至5分钟)。调整集群环境的TCP Keepalive参数会影响故障检测的响应时间。 enable_stream_operator=on会影响性能,如果该会话后续还有别的sql执行,建议设置set enable_stream_operator=off,如果没有,则直接断开会话即可。
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 BEGIN FOR ROW_TRANS IN SELECT first_name FROM hr.staffs LOOP DBE_OUTPUT.PRINT_LINE (ROW_TRANS.first_name ); END LOOP; END; / --创建表 CREATE TABLE integerTable1( A INTEGER) DISTRIBUTE BY hash(A); CREATE TABLE integerTable2( B INTEGER) DISTRIBUTE BY hash(B); INSERT INTO integerTable2 VALUES(2); --多游标共享游标属性的标量 DECLARE CURSOR C1 IS SELECT A FROM integerTable1;--声明游标 CURSOR C2 IS SELECT B FROM integerTable2; PI_A INTEGER; PI_B INTEGER; BEGIN OPEN C1;--打开游标 OPEN C2; FETCH C1 INTO PI_A; ---- C1%FOUND 和 C2%FOUND 值为 FALSE FETCH C2 INTO PI_B; ---- C1%FOUND 和 C2%FOUND 的值都为 TRUE --判断游标状态 IF C1%FOUND THEN IF C2%FOUND THEN DBE_OUTPUT.PRINT_LINE('Dual cursor share paremeter.'); END IF; END IF; CLOSE C1;--关闭游标 CLOSE C2; END; / --删除临时表 DROP TABLE integerTable1; DROP TABLE integerTable2;
  • log_truncate_on_rotation 参数说明:logging_collector设置为on时,log_truncate_on_rotation设置日志消息的写入方式。 该参数属于SIGHUP类型参数,请参考表1中对应设置方法进行设置。 示例如下: 假设日志需要保留7天,每天生成一个日志文件,日志文件名设置为server_log.Mon、server_log.Tue等。第二周的周二生成的日志消息会覆盖写入到server_log.Tue。设置方法:将log_filename设置为server_log.%a ,log_truncate_on_rotation设置为on,log_rotation_age设置为1440,即日志有效时间为1天。 取值范围: 布尔型 on表示GaussDB以覆盖写入的方式写服务器日志消息。 off表示GaussDB将日志消息附加到同名的现有日志文件上。 默认值:off
  • log_rotation_age 参数说明:logging_collector设置为on时,log_rotation_age决定创建一个新日志文件的时间间隔。当现在的时间减去上次创建一个服务器日志的时间超过了log_rotation_age的值时,将生成一个新的日志文件。 该参数属于SIGHUP类型参数,请参考表1中对应设置方法进行设置。 取值范围:整型,0 ~ 35791394,单位为min。其中0表示关闭基于时间的新日志文件的创建。 默认值:1440(min)
  • log_rotation_size 参数说明:logging_collector设置为on时,log_rotation_size决定服务器日志文件的最大容量。当日志消息的总量超过日志文件容量时,服务器将生成一个新的日志文件。 该参数属于SIGHUP类型参数,请参考表1中对应设置方法进行设置。 取值范围:整型,0 ~ INT_MAX / 1024,单位为kB。 0表示关闭基于容量的新日志文件的创建。 建议该值大小设置级别至少为MB级,利于日志文件的及时划分。 默认值:20MB
  • 参数说明 IF EXISTS 如果指定的全文检索词典不存在,那么发出一个Notice而不是报错。 name 要删除的词典名称(可指定模式名,否则默认在当前模式下)。 取值范围:已存在的词典名。 CASCADE 自动删除依赖于该词典的对象,并依次删除依赖于这些对象的所有对象。 如果存在任何一个使用该词典的文本搜索配置,此DROP命令将不会成功。可添加CASCADE以删除引用该词典的所有文本搜索配置以及词典。 RESTRICT 如果任何对象依赖词典,则拒绝删除该词典。这是缺省值。
  • 层次递归查询函数 层次递归查询语句中可使用以下函数返回连接路径上的相关信息。 sys_connect_by_path(col, separator) 描述:仅在层次递归查询中适用,用于返回从根节点到当前行的连接路径。 参数col为在路径中显示的列的名称,只支持类型为CHAR/VARCHAR/NVARCHAR2/TEXT的列,参数separator为路径节点之间的分隔符。 返回值类型:text 示例: 1 2 3 4 5 6 7 8 gaussdb=# select *, sys_connect_by_path(name, '-') from connect_table start with id = 1 connect by prior id = pid; id | pid | name | sys_connect_by_path ----+-----+------+--------------------- 1 | 0 | a | -a 2 | 1 | b | -a-b 4 | 1 | d | -a-d 3 | 2 | c | -a-b-c (4 rows) connect_by_root(col) 描述:仅在层次递归查询中适用,用于返回当前行最顶层父亲行中某列的值。 参数col为输出列的名称。 返回值类型:即为所指定列col的数据类型。 示例: 1 2 3 4 5 6 7 8 gaussdb=# select *, connect_by_root(name) from connect_table start with id = 1 connect by prior id = pid; id | pid | name | connect_by_root ----+-----+------+----------------- 1 | 0 | a | a 2 | 1 | b | a 4 | 1 | d | a 3 | 2 | c | a (4 rows) 父主题: 函数和操作符
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 --获取字符串的长度 SELECT DBE_LOB.GET_LENGTH('12345678'); DECLARE myraw RAW(100); amount INTEGER :=2; buffer INTEGER :=1; begin DBE_LOB.READ('123456789012345',amount,buffer,myraw); dbe_output.print_line(myraw); end; / CREATE TABLE blob_Table (t1 blob) DISTRIBUTE BY REPLICATION; CREATE TABLE blob_Table_bak (t2 blob) DISTRIBUTE BY REPLICATION; INSERT INTO blob_Table VALUES('abcdef'); INSERT INTO blob_Table_bak VALUES('22222'); DECLARE str varchar2(100) := 'abcdef'; source raw(100); dest blob; copyto blob; amount int; PSV_SQL varchar2(100); PSV_SQL1 varchar2(100); a int :=1; len int; BEGIN source := dbe_raw.cast_from_varchar2_to_raw(str); amount := dbe_raw.get_length(source); PSV_SQL :='select * from blob_Table for update'; PSV_SQL1 := 'select * from blob_Table_bak for update'; EXECUTE IMMEDIATE PSV_SQL into dest; EXECUTE IMMEDIATE PSV_SQL1 into copyto; DBE_LOB.WRITE(dest, amount, 1, source); DBE_LOB.WRITE_APPEND(dest, amount, source); DBE_LOB.ERASE(dest, a, 1); DBE_OUTPUT.PRINT_LINE(a); DBE_LOB.COPY(copyto, dest, amount, 10, 1); DBE_LOB.CLOSE(dest); RETURN; END; / --删除表 DROP TABLE blob_Table; DROP TABLE blob_Table_bak;
  • 示例 byteawithoutorderwithequalcolin、byteawithoutorderwithequalcolout等密态等值函数为数据库内核中数据类型byteawithoutorderwithequalcol指定的in、out、send、recv等读写格式转换函数,具体可参考bytea类型的byteain、byteaout等函数,但会对本地的cek进行验证,需要密文字段中有本地存在的cekoid才能执行成功。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -- 例如存在加密表int_type,int_col2为其加密列 -- 使用非密态客户端连接数据库,查询加密列密文 gaussdb=# select int_col2 from int_type; int_col2 ------------------------------------------------------------------------------------------------------------------------------------------------------ \x01c35301bf421c8edf38c34704bcc82838742917778ccb402a1b7452ad4a6ac7371acc0ac33100000035fe3424919854c86194f1aa5bb4e1ca656e8fc6d05324a1419b69f488bdc3c6 (1 row) -- 将加密列密文当做byteawithoutorderwithequalcolin入参,格式从cstring输入转码转化成内部byteawithoutorderwithequalcol形式 gaussdb=# select byteawithoutorderwithequalcolin('\x01c35301bf421c8edf38c34704bcc82838742917778ccb402a1b7452ad4a6ac7371acc0ac33100000035fe3424919854c86194f1aa5bb4e1ca656e8fc6d05324a1419b69f488bdc3c6'); byteawithoutorderwithequalcolin ------------------------------------------------------------------------------------------------------------------------------------------------------ \x01c35301bf421c8edf38c34704bcc82838742917778ccb402a1b7452ad4a6ac7371acc0ac33100000035fe3424919854c86194f1aa5bb4e1ca656e8fc6d05324a1419b69f488bdc3c6 (1 row) 由于byteawithoutorderwithequalcolin等的实现会对cek进行查找,并且判断是否为正常加密后的数据类型。 因此如果用户输入数据的格式不是加密后的数据格式,并且在本地不存在对应cek的情况下,会返回错误。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 gaussdb=# SELECT * FROM byteawithoutorderwithequalcolsend('\x907219912381298461289346129'::byteawithoutorderwithequalcol); ERROR: cek with OID 596711794 not found LINE 1: SELECT * FROM byteawithoutorderwithequalcolsend('\x907219912... ^ gaussdb=# SELECT * FROM byteawithoutordercolout('\x90721901999999999999912381298461289346129'); ERROR: cek with OID 2566986098 not found LINE 1: SELECT * FROM byteawithoutordercolout('\x9072190199999999999... SELECT * FROM byteawithoutorderwithequalcolrecv('\x90721901999999999999912381298461289346129'::byteawithoutorderwithequalcol); ERROR: cek with OID 2566986098 not found ^ gaussdb=# SELECT * FROM byteawithoutorderwithequalcolsend('\x90721901999999999999912381298461289346129'::byteawithoutorderwithequalcol); ERROR: cek with OID 2566986098 not found LINE 1: SELECT * FROM byteawithoutorderwithequalcolsend('\x907219019... ^
  • 优化分析2 在以上查询中,supplier、lineitem、partsupp三表做hashjoin的条件为(lineitem.l_suppkey = supplier.s_suppkey) AND (lineitem.l_partkey = partsupp.ps_partkey),此hashjoin条件中存在两个过滤条件,这前一个过滤条件中的lineitem.l_suppkey和后一个过滤条件中的lineitem.l_partkey同为lineitem表的两列,这两列存在强相关的关联关系。在这种情况,估算hashjoin条件的选择率时,如果使用cost_param的bit1为0时,实际是将AND的两个过滤条件分别计算的2个选择率的值相乘来得到hashjoin条件的选择率,导致行数估算不准确,查询性能较差。所以需要将cost_param的bit1为1时,选择最小的选择率作为总的选择率估算行数比较准确,查询性能较好,优化后的计划如下图所示:
  • 现象描述2 当cost_param的bit1(set cost_param=2)为1时,表示求多个过滤条件(Filter)的选择率时,选择最小的作为总的选择率,而非两者乘积,此方法在过滤条件的列之间关联性较强时估算更加准确。下面查询的例子是cost_param的bit1为1时的优化场景。 表结构如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 CREATE TABLE NATION ( N_NATIONKEY INT NOT NULL , N_NAME CHAR(25) NOT NULL , N_REGIONKEY INT NOT NULL , N_COMMENT VARCHAR(152) ) distribute by replication; CREATE TABLE SUPPLIER ( S_SUPPKEY BIGINT NOT NULL , S_NAME CHAR(25) NOT NULL , S_ADDRESS VARCHAR(40) NOT NULL , S_NATIONKEY INT NOT NULL , S_PHONE CHAR(15) NOT NULL , S_ACCTBAL DECIMAL(15,2) NOT NULL , S_COMMENT VARCHAR(101) NOT NULL ) distribute by hash(S_SUPPKEY); CREATE TABLE PARTSUPP ( PS_PARTKEY BIGINT NOT NULL , PS_SUPPKEY BIGINT NOT NULL , PS_AVAILQTY BIGINT NOT NULL , PS_SUPPLYCOST DECIMAL(15,2)NOT NULL , PS_COMMENT VARCHAR(199) NOT NULL )distribute by hash(PS_PARTKEY); 查询语句如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 set cost_param=2; explain verbose select nation, sum(amount) as sum_profit from ( select n_name as nation, l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount from supplier, lineitem, partsupp, nation where s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and s_nationkey = n_nationkey ) as profit group by nation order by nation; 当cost_param的bit1为0时,执行计划如下图所示:
  • 文本检索调试函数 ts_debug([ config regconfig, ] document text, OUT alias text, OUT description text, OUT token text, OUT dictionaries regdictionary[], OUT dictionary regdictionary, OUT lexemes text[]) 描述:测试一个配置。 返回类型:setof record 示例: 1 2 3 4 5 6 7 8 9 postgres=# SELECT ts_debug('english', 'The Brightest supernovaes'); ts_debug ----------------------------------------------------------------------------------- (asciiword,"Word, all ASCII",The,{english_stem},english_stem,{}) (blank,"Space symbols"," ",{},,) (asciiword,"Word, all ASCII",Brightest,{english_stem},english_stem,{brightest}) (blank,"Space symbols"," ",{},,) (asciiword,"Word, all ASCII",supernovaes,{english_stem},english_stem,{supernova}) (5 rows) ts_lexize(dict regdictionary, token text) 描述:测试一个数据字典。 返回类型:text[] 示例: 1 2 3 4 5 postgres=# SELECT ts_lexize('english_stem', 'stars'); ts_lexize ----------- {star} (1 row) ts_parse(parser_name text, document text, OUT tokid integer, OUT token text) 描述:测试一个解析。 返回类型:setof record 示例: 1 2 3 4 5 6 7 8 postgres=# SELECT ts_parse('default', 'foo - bar'); ts_parse ----------- (1,foo) (12," ") (12,"- ") (1,bar) (4 rows) ts_parse(parser_oid oid, document text, OUT tokid integer, OUT token text) 描述:测试一个解析。 返回类型:setof record 示例: 1 2 3 4 5 6 7 8 postgres=# SELECT ts_parse(3722, 'foo - bar'); ts_parse ----------- (1,foo) (12," ") (12,"- ") (1,bar) (4 rows) ts_token_type(parser_name text, OUT tokid integer, OUT alias text, OUT description text) 描述:获取分析器定义的记号类型。 返回类型:setof record 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 postgres=# SELECT ts_token_type('default'); ts_token_type -------------------------------------------------------------- (1,asciiword,"Word, all ASCII") (2,word,"Word, all letters") (3,numword,"Word, letters and digits") (4,email,"Email address") (5,url,URL) (6,host,Host) (7,sfloat,"Scientific notation") (8,version,"Version number") (9,hword_numpart,"Hyphenated word part, letters and digits") (10,hword_part,"Hyphenated word part, all letters") (11,hword_asciipart,"Hyphenated word part, all ASCII") (12,blank,"Space symbols") (13,tag,"XML tag") (14,protocol,"Protocol head") (15,numhword,"Hyphenated word, letters and digits") (16,asciihword,"Hyphenated word, all ASCII") (17,hword,"Hyphenated word, all letters") (18,url_path,"URL path") (19,file,"File or path name") (20,float,"Decimal notation") (21,int,"Signed integer") (22,uint,"Unsigned integer") (23,entity,"XML entity") (23 rows) ts_token_type(parser_oid oid, OUT tokid integer, OUT alias text, OUT description text) 描述:获取分析器定义的记号类型。 返回类型:setof record 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 postgres=# SELECT ts_token_type(3722); ts_token_type -------------------------------------------------------------- (1,asciiword,"Word, all ASCII") (2,word,"Word, all letters") (3,numword,"Word, letters and digits") (4,email,"Email address") (5,url,URL) (6,host,Host) (7,sfloat,"Scientific notation") (8,version,"Version number") (9,hword_numpart,"Hyphenated word part, letters and digits") (10,hword_part,"Hyphenated word part, all letters") (11,hword_asciipart,"Hyphenated word part, all ASCII") (12,blank,"Space symbols") (13,tag,"XML tag") (14,protocol,"Protocol head") (15,numhword,"Hyphenated word, letters and digits") (16,asciihword,"Hyphenated word, all ASCII") (17,hword,"Hyphenated word, all letters") (18,url_path,"URL path") (19,file,"File or path name") (20,float,"Decimal notation") (21,int,"Signed integer") (22,uint,"Unsigned integer") (23,entity,"XML entity") (23 rows) ts_stat(sqlquery text, [ weights text, ] OUT word text, OUT ndoc integer, OUT nentry integer) 描述:获取tsvector列的统计数据。 返回类型:setof record 示例: 1 2 3 4 5 6 postgres=# SELECT ts_stat('select ''hello world''::tsvector'); ts_stat ------------- (world,1,1) (hello,1,1) (2 rows)
  • 任务示例 示例1:将表reasons的数据通过外表foreign_tpcds_reasons导出到数据文件中。 1 postgres=# INSERT INTO foreign_tpcds_reasons SELECT * FROM reasons; 示例2:通过条件过滤(r_reason_sk =1),向数据文件中导出部分数据。 1 postgres=# INSERT INTO foreign_tpcds_reasons SELECT * FROM reasons WHERE r_reason_sk=1; 示例3:对于特殊的数据类型如RAW类型,在导出之后是一个二进制文本,导入工具无法识别。需使用RAWTOHEX()函数将其转换为16进制文本导出。 1 postgres=# INSERT INTO foreign_blob_type_tab SELECT RAWTOHEX(c) FROM blob_type_tab;
  • 操作步骤 执行数据导出。 1 INSERT INTO [foreign table 表名] SELECT * FROM [源表名]; 编写批处理任务脚本,实现并发批量导出数据。并发量视机器资源使用情况而定。可通过几个表测试,监控资源利用率,根据结果提高或减少并发量。常用资源监控命令有:内存和CPU监控top命令,IO监控命令iostat,网络监控命令sar等。 仅支持单个内表导出,不支持多表Join联合导出,不支持单表的聚集、排序、子查询、limit等操作结果导出。 本版本中GDS导出已经支持CN RETRY,当出现DN故障或者GTM故障导致的网络错误发生时会触发CN RETRY。注意要保证GDS 和内核版本一致或者都高于此版本。
  • 参数 表1 SQLSetConnectAttr参数 关键字 参数说明 ConnectionHandle 连接句柄。 Attribute 设置属性。 ValuePtr 指向对应Attribute的值。依赖于Attribute的值,ValuePtr是32位无符号整型值或指向以空结束的字符串。注意,如果ValuePtr参数是驱动程序指定值。ValuePtr可能是有符号的整数。 StringLength 如果ValuePtr指向字符串或二进制缓冲区,这个参数是*ValuePtr长度,如果ValuePtr指向整型,忽略StringLength。
  • 原型 1 2 3 4 SQLRETURN SQLSetConnectAttr(SQLHDBC ConnectionHandle SQLINTEGER Attribute, SQLPOINTER ValuePtr, SQLINTEGER StringLength);
  • 文档概念 文档是全文搜索系统的搜索单元,例如:杂志上的一篇文章或电子邮件消息。文本搜索引擎必须能够解析文档,而且可以存储父文档的关联词素(关键词)。后续,这些关联词素用来搜索包含查询词的文档。 在GaussDB中,文档通常是一个数据库表中一行的文本字段,或者这些字段的可能组合(级联)。文档可能存储在多个表中或者需动态获取。换句话说,一个文档由被索引化的不同部分构成,因此无法存储为一个整体。比如: 1 2 3 4 5 6 7 8 9 10 11 gaussdb=# SELECT d_dow || '-' || d_dom || '-' || d_fy_week_seq AS identify_serials FROM tpcds.date_dim WHERE d_fy_week_seq = 1; identify_serials ------------------ 5-6-1 0-8-1 2-3-1 3-4-1 4-5-1 1-2-1 6-7-1 (7 rows) 实际上,在这些示例查询中,应该使用coalesce防止一个独立的NULL属性导致整个文档的NULL结果。 另外一种可能是:文档在文件系统中作为简单的文本文件存储。在这种情况下,数据库可以用于存储全文索引并且执行搜索,同时可以使用一些唯一标识从文件系统中检索文档。然而,从数据库外部检索文件需要拥有系统管理员权限或者特殊函数支持。因此,还是将所有数据保存在数据库中比较方便。同时,将所有数据保存在数据库中可以方便地访问文档元数据以便于索引和显示。 为了实现文本搜索目的,必须将每个文档减少至预处理后的tsvector格式。搜索和相关性排序都是在tsvector形式的文档上执行的。原始文档只有在被选中要呈现给用户时才会被检索。因此,我们常将tsvector说成文档,但是很显然其实它只是完整文档的一种紧凑表示。 父主题: 介绍
  • 示例 1 2 3 4 --删除客户端加密主密钥对象。 postgres=# DROP COLUMN ENCRYPTION KEY ImgCEK CASCADE; ERROR: cannot drop column setting: imgcek cascadely because encrypted column depend on it. HINT: we have to drop encrypted column: name, ... before drop column setting: imgcek cascadely.
  • 返回值 SQL_SUCCESS:表示调用正确。 SQL_SUCCESS_WITH_INFO:表示会有一些警告信息。 SQL_NEED_DATA:在执行SQL语句前没有提供足够的参数。 SQL_ERROR:表示比较严重的错误,如:内存分配失败、建立连接失败等。 SQL_INVALID_HANDLE:表示调用无效句柄。其他API的返回值同理。 SQL_STILL_EXECUTING:表示语句正在执行。 SQL_NO_DATA:表示SQL语句不返回结果集。
  • 功能描述 SET CONSTRAINTS设置当前事务检查行为的约束条件。 IMMEDIATE约束是在每条语句后面进行检查。DEFERRED约束一直到事务提交时才检查。每个约束都有自己的模式。 从创建约束条件开始,一个约束总是设定为DEFERRABLE INITIALLY DEFERRED,DEFERRABLE INITIALLY IMMEDIATE,NOT DEFERRABLE三个特性之一。第三种总是IMMEDIATE,并且不会受SET CONSTRAINTS影响。前两种以指定的方式启动每个事务,但是其行为可以在事务里用SET CONSTRAINTS改变。 带着一个约束名列表的SET CONSTRAINTS改变这些约束的模式(都必须是可推迟的)。如果有多个约束匹配某个名称,则所有都会被影响。SET CONSTRAINTS ALL改变所有可推迟约束的模式。 当SET CONSTRAINTS把一个约束从DEFERRED改成IMMEDIATE的时候,新模式反作用式地起作用:任何将在事务结束准备进行的数据修改都将在SET CONSTRAINTS的时候执行检查。如果违反了任何约束,SET CONSTRAINTS都会失败(并且不会修改约束模式)。因此,SET CONSTRAINTS可以用于强制在事务中某一点进行约束检查。 目前,只有外键约束被该设置影响。检查和唯一约束总是不可推迟的。
  • 语法格式 单表删除: [ WITH [ RECURSIVE ] with_query [, ...] ] DELETE [/*+ plan_hint */] [FROM] [ ONLY ] table_name [ * ] [ [ [partition_clause] [ [ AS ] alias ] ] | [ [ [ AS ] alias ] [partitions_clause] ] ] [ USING using_list ] [ WHERE condition | WHERE CURRENT OF cursor_name ] [ ORDER BY {expression [ [ ASC | DESC | USING operator ] [ LIMIT { count } ] [ RETURNING { * | { output_expr [ [ AS ] output_name ] } [, ...] } ];
  • 注意事项 表的所有者、被授予了表DELETE权限的用户或被授予DELETE ANY TABLE权限的用户有权删除表中数据,系统管理员默认拥有此权限。同时也必须有USING子句引用的表以及condition上读取的表的SELECT权限。 对于列存表,暂时不支持RETURNING子句。 对于多表删除语法,暂时不支持对列存表、视图和含有RULE的表进行多表删除。 对于子查询是stream计划的DELETE语句,不支持删除的同一行被并发更新。
  • 参数说明 WITH [ RECURSIVE ] with_query [, ...] 用于声明一个或多个可以在主查询中通过名称引用的子查询,相当于临时表。 如果声明了RECURSIVE,那么允许SELECT子查询通过名称引用它自己。 – with_query_name指定子查询生成的结果集名称,在查询中可使用该名称访问 子查询的结果集。 – column_name指定子查询结果集中显示的列名。 – 每个子查询可以是SELECT,VALUES,INSERT,UPDATE或DELETE语句。 – 用户可以使用MATERIALIZED / NOT MATERIALIZED对CTE进行修饰。 如果声明为MATERIALIZED,WITH查询将被物化,生成一个子查询结果集的拷贝,在引用处直接查询该拷贝,因此WITH子查询无法和主干SELECT语句进行联合优化(如谓词下推、等价类传递等),对于此类场景可以使用NOT MATERIALIZED进行修饰,如果WITH查询语义上可以作为子查询内联执行,则可以进行上述优化。 如果用户没有显示声明物化属性则遵守以下规则:如果CTE只在所属主干语句中被引用一次,且语义上支持内联执行,则会被改写为子查询内联执行,否则以CTE Scan的方式物化执行。 plan_hint子句 以/*+ */的形式在DELETE关键字后,用于对DELETE对应的语句块生成的计划进行hint调优,详细用法请参见章节使用Plan Hint进行调优。每条语句中只有第一个/*+ plan_hint */注释块会作为hint生效,里面可以写多条hint。 ONLY 如果指定ONLY则只有该表被删除;如果没有声明,则该表和它的所有子表将都被删除。 table_name 目标表的名称(可以有模式修饰)。 取值范围:已存在的表名。 支持使用DATABASE LINK方式对远端表进行操作,使用方式详情请见DATABASE LINK。 partition_clause 指定分区删除操作。 PARTITION { ( partition_name ) | FOR ( partition_value [, ...] ) } | SUBPARTITION { ( subpartition_name ) | FOR ( subpartition_value [, ...] ) } 关键字详见SELECT章节介绍。 示例详见CREATE TABLE SUBPARTITION。 partitions_clause 指定多个分区删除操作。 PARTITION { ( { partition_name | subpartition_name } [, ...] ) } 此语法仅在参数sql_compatibility='B'时生效。 关键字详见SELECT章节介绍。 示例详见CREATE TABLE SUBPARTITION。 alias 目标表的别名。 取值范围:字符串,符合标识符命名规范。 using_list using子句。 当参数sql_compatibility='B'或删除多张目标表时,using_list指定关联表的集合时可以同时出现目标表,并且可以定义表的别名并在目标表中使用。其他情况下则目标表不可重复出现在using_list中。 condition 一个返回Boolean值的表达式,用于判断哪些行需要被删除。不建议使用int等数值类型作为condition,因为int等数值类型可以隐式转换为bool值(非0值隐式转换为true,0转换为false),可能导致非预期的结果。 WHERE CURRENT OF cursor_name 当cursor指向表的某一行时,可以使用此语法删除cursor当前指向的行。使用限制及约束请参考UPDATE章节对此语法介绍。 ORDER BY子句 关键字详见SELECT章节介绍。 LIMIT子句 关键字详见SELECT章节介绍。 output_expr DELETE命令删除行之后计算输出结果的表达式。该表达式可以使用表的任意字段。可以使用*返回被删除行的所有字段。 output_name 一个字段的输出名称。 取值范围:字符串,符合标识符命名规范。
  • 注意事项 大多数词典的功能依赖于词典定义文件,词典定义文件名仅支持小写字母、数字、下划线组合。 临时模式pg_temp下不允许创建词典。 词典定义文件的字符集编码必须为UTF-8格式。实际应用时,如果与数据库的字符编码格式不一致,在读入词典定义文件时会进行编码转换。 通常情况下,每个session仅读取词典定义文件一次,当且仅当在第一次使用该词典时。需要修改词典文件时,可通过ALTER TEXT SEARCH DICTIONARY命令进行词典定义文件的更新和重新加载。
  • 操作步骤 创建Simple词典。 1 2 3 4 postgres=# CREATE TEXT SEARCH DICTIONARY public.simple_dict ( TEMPLATE = pg_catalog.simple, STOPWORDS = english ); 其中,停用词表文件全名为english.stop。关于创建simple词典的语法和更多参数,请参见CREATE TEXT SEARCH DICTIONARY。 使用Simple词典。 1 2 3 4 5 6 7 8 9 10 11 postgres=# SELECT ts_lexize('public.simple_dict','YeS'); ts_lexize ----------- {yes} (1 row) postgres=# SELECT ts_lexize('public.simple_dict','The'); ts_lexize ----------- {} (1 row) 设置参数ACCEPT=false,使Simple词典返回NULL,而不是返回非停用词的小写形式。 1 2 3 4 5 6 7 8 9 10 11 12 13 postgres=# ALTER TEXT SEARCH DICTIONARY public.simple_dict ( Accept = false ); ALTER TEXT SEARCH DICTIONARY postgres=# SELECT ts_lexize('public.simple_dict','YeS'); ts_lexize ----------- (1 row) postgres=# SELECT ts_lexize('public.simple_dict','The'); ts_lexize ----------- {} (1 row)
  • 示例2:Shared策略导入 导入前的准备。 假设TEXT格式的数据源文件“foreign_tpcds_reasons.dat.0”保存在192.168.0.90服务器上“/input_data”目录下。 在数据服务器上配置NFS服务。具体配置方法可以参考SUSE DOC:管理指南-配置NFS服务器。 NFS服务及其数据传输的安全性由用户自己保证,建议用户在可信域内使用NFS服务。 在数据服务器上启动NFS服务。 service nfs start 以普通用户在GaussDB各DN所在的主机创建数据文件目录上“/input_data”,并将数据源服务器mount到此目录下。 cd /input_data mount -t nfs 192.168.0.90:/input_data /input_data 使用如下命令连接数据库。 gsql -d postgres -p 8000 postgres为需要连接的数据库名称,8000为CN的端口号。 连接成功后,系统显示类似如下信息: gsql ((GaussDB Kernel VxxxRxxxCxx build 290d125f) compiled at 2020-05-08 02:59:43 commit 2143 last mr 131) Non-SSL connection (SSL connection is recommended when requiring high-security) Type "help" for help. postgres=# 创建导入目标表reasons。 1 2 3 4 5 6 postgres=# CREATE TABLE reasons ( r_reason_sk integer not null, r_reason_id char(16) not null, r_reason_desc char(100) ); 创建外表foreign_tpcds_reasons用于接收数据服务器上的数据。 1 2 3 4 5 6 postgres=# CREATE FOREIGN TABLE foreign_tpcds_reasons ( r_reason_sk integer not null, r_reason_id char(16) not null, r_reason_desc char(100) ) SERVER gsmpp_server OPTIONS (location 'file:///input_data/foreign_tpcds_reasons.dat.0', format 'TEXT', mode 'shared', delimiter E'\x08', NULL ''); 将数据导入reasons。 1 postgres=# INSERT INTO reasons SELECT * FROM foreign_tpcds_reasons; 父主题: 示例
  • 功能描述 检查点(CHECKPOINT)是一个事务日志中的点,所有数据文件都在该点被更新以反映日志中的信息,所有数据文件都将被刷新到磁盘。 设置事务日志检查点。预写式日志(WAL)缺省时在事务日志中每隔一段时间放置一个检查点。可以设置相关运行时参数(checkpoint_segments,checkpoint_timeout和incremental_checkpoint_timeout)来调整这个原子化检查点的间隔。
  • 示例 示例1:创建各种组合类型的二级分区表 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 CREATE TABLE list_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY LIST (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 VALUES ( '201902' ) ( SUBPARTITION p_201901_a VALUES ( '1' ), SUBPARTITION p_201901_b VALUES ( '2' ) ), PARTITION p_201902 VALUES ( '201903' ) ( SUBPARTITION p_201902_a VALUES ( '1' ), SUBPARTITION p_201902_b VALUES ( '2' ) ) ); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201902', '2', '1', 1); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); insert into list_list values('201903', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); select * from list_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (6 rows) drop table list_list; CREATE TABLE list_hash ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY LIST (month_code) SUBPARTITION BY HASH (dept_code) ( PARTITION p_201901 VALUES ( '201902' ) ( SUBPARTITION p_201901_a, SUBPARTITION p_201901_b ), PARTITION p_201902 VALUES ( '201903' ) ( SUBPARTITION p_201902_a, SUBPARTITION p_201902_b ) ); insert into list_hash values('201902', '1', '1', 1); insert into list_hash values('201902', '2', '1', 1); insert into list_hash values('201902', '3', '1', 1); insert into list_hash values('201903', '4', '1', 1); insert into list_hash values('201903', '5', '1', 1); insert into list_hash values('201903', '6', '1', 1); select * from list_hash; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 4 | 1 | 1 201903 | 5 | 1 | 1 201903 | 6 | 1 | 1 201902 | 2 | 1 | 1 201902 | 3 | 1 | 1 201902 | 1 | 1 | 1 (6 rows) drop table list_hash; CREATE TABLE list_range ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY LIST (month_code) SUBPARTITION BY RANGE (dept_code) ( PARTITION p_201901 VALUES ( '201902' ) ( SUBPARTITION p_201901_a values less than ('4'), SUBPARTITION p_201901_b values less than ('6') ), PARTITION p_201902 VALUES ( '201903' ) ( SUBPARTITION p_201902_a values less than ('3'), SUBPARTITION p_201902_b values less than ('6') ) ); insert into list_range values('201902', '1', '1', 1); insert into list_range values('201902', '2', '1', 1); insert into list_range values('201902', '3', '1', 1); insert into list_range values('201903', '4', '1', 1); insert into list_range values('201903', '5', '1', 1); insert into list_range values('201903', '6', '1', 1); ERROR: inserted partition key does not map to any table partition select * from list_range; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 4 | 1 | 1 201903 | 5 | 1 | 1 201902 | 1 | 1 | 1 201902 | 2 | 1 | 1 201902 | 3 | 1 | 1 (5 rows) drop table list_range; CREATE TABLE range_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY RANGE (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 VALUES LESS THAN( '201903' ) ( SUBPARTITION p_201901_a values ('1'), SUBPARTITION p_201901_b values ('2') ), PARTITION p_201902 VALUES LESS THAN( '201904' ) ( SUBPARTITION p_201902_a values ('1'), SUBPARTITION p_201902_b values ('2') ) ); insert into range_list values('201902', '1', '1', 1); insert into range_list values('201902', '2', '1', 1); insert into range_list values('201902', '1', '1', 1); insert into range_list values('201903', '2', '1', 1); insert into range_list values('201903', '1', '1', 1); insert into range_list values('201903', '2', '1', 1); select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 (6 rows) drop table range_list; CREATE TABLE range_hash ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY RANGE (month_code) SUBPARTITION BY HASH (dept_code) ( PARTITION p_201901 VALUES LESS THAN( '201903' ) ( SUBPARTITION p_201901_a, SUBPARTITION p_201901_b ), PARTITION p_201902 VALUES LESS THAN( '201904' ) ( SUBPARTITION p_201902_a, SUBPARTITION p_201902_b ) ); insert into range_hash values('201902', '1', '1', 1); insert into range_hash values('201902', '2', '1', 1); insert into range_hash values('201902', '1', '1', 1); insert into range_hash values('201903', '2', '1', 1); insert into range_hash values('201903', '1', '1', 1); insert into range_hash values('201903', '2', '1', 1); select * from range_hash; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 (6 rows) drop table range_hash; CREATE TABLE range_range ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY RANGE (month_code) SUBPARTITION BY RANGE (dept_code) ( PARTITION p_201901 VALUES LESS THAN( '201903' ) ( SUBPARTITION p_201901_a VALUES LESS THAN( '2' ), SUBPARTITION p_201901_b VALUES LESS THAN( '3' ) ), PARTITION p_201902 VALUES LESS THAN( '201904' ) ( SUBPARTITION p_201902_a VALUES LESS THAN( '2' ), SUBPARTITION p_201902_b VALUES LESS THAN( '3' ) ) ); insert into range_range values('201902', '1', '1', 1); insert into range_range values('201902', '2', '1', 1); insert into range_range values('201902', '1', '1', 1); insert into range_range values('201903', '2', '1', 1); insert into range_range values('201903', '1', '1', 1); insert into range_range values('201903', '2', '1', 1); select * from range_range; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 2 | 1 | 1 201903 | 1 | 1 | 1 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 (6 rows) drop table range_range; CREATE TABLE hash_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY hash (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 ( SUBPARTITION p_201901_a VALUES ( '1' ), SUBPARTITION p_201901_b VALUES ( '2' ) ), PARTITION p_201902 ( SUBPARTITION p_201902_a VALUES ( '1' ), SUBPARTITION p_201902_b VALUES ( '2' ) ) ); insert into hash_list values('201901', '1', '1', 1); insert into hash_list values('201901', '2', '1', 1); insert into hash_list values('201901', '1', '1', 1); insert into hash_list values('201903', '2', '1', 1); insert into hash_list values('201903', '1', '1', 1); insert into hash_list values('201903', '2', '1', 1); select * from hash_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 201901 | 2 | 1 | 1 201901 | 1 | 1 | 1 201901 | 1 | 1 | 1 (6 rows) drop table hash_list; CREATE TABLE hash_hash ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY hash (month_code) SUBPARTITION BY hash (dept_code) ( PARTITION p_201901 ( SUBPARTITION p_201901_a, SUBPARTITION p_201901_b ), PARTITION p_201902 ( SUBPARTITION p_201902_a, SUBPARTITION p_201902_b ) ); insert into hash_hash values('201901', '1', '1', 1); insert into hash_hash values('201901', '2', '1', 1); insert into hash_hash values('201901', '1', '1', 1); insert into hash_hash values('201903', '2', '1', 1); insert into hash_hash values('201903', '1', '1', 1); insert into hash_hash values('201903', '2', '1', 1); select * from hash_hash; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 201901 | 2 | 1 | 1 201901 | 1 | 1 | 1 201901 | 1 | 1 | 1 (6 rows) drop table hash_hash; CREATE TABLE hash_range ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY hash (month_code) SUBPARTITION BY range (dept_code) ( PARTITION p_201901 ( SUBPARTITION p_201901_a VALUES LESS THAN ( '2' ), SUBPARTITION p_201901_b VALUES LESS THAN ( '3' ) ), PARTITION p_201902 ( SUBPARTITION p_201902_a VALUES LESS THAN ( '2' ), SUBPARTITION p_201902_b VALUES LESS THAN ( '3' ) ) ); insert into hash_range values('201901', '1', '1', 1); insert into hash_range values('201901', '2', '1', 1); insert into hash_range values('201901', '1', '1', 1); insert into hash_range values('201903', '2', '1', 1); insert into hash_range values('201903', '1', '1', 1); insert into hash_range values('201903', '2', '1', 1); select * from hash_range; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 1 | 1 | 1 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201901 | 1 | 1 | 1 201901 | 1 | 1 | 1 201901 | 2 | 1 | 1 (6 rows) 示例2:对二级分区表进行DML指定分区操作 CREATE TABLE range_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY RANGE (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 VALUES LESS THAN( '201903' ) ( SUBPARTITION p_201901_a values ('1'), SUBPARTITION p_201901_b values ('2') ), PARTITION p_201902 VALUES LESS THAN( '201910' ) ( SUBPARTITION p_201902_a values ('1'), SUBPARTITION p_201902_b values ('2') ) ); --指定一级分区插入数据 insert into range_list partition (p_201901) values('201902', '1', '1', 1); --实际分区和指定分区不一致,报错 insert into range_list partition (p_201902) values('201902', '1', '1', 1); ERROR: inserted partition key does not map to the table partition DETAIL: N/A. --指定二级分区插入数据 insert into range_list subpartition (p_201901_a) values('201902', '1', '1', 1); --实际分区和指定分区不一致,报错 insert into range_list subpartition (p_201901_b) values('201902', '1', '1', 1); ERROR: inserted subpartition key does not map to the table subpartition DETAIL: N/A. insert into range_list partition for ('201902') values('201902', '1', '1', 1); insert into range_list subpartition for ('201902','1') values('201902', '1', '1', 1); --指定分区查询数据 select * from range_list partition (p_201901); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) select * from range_list subpartition (p_201901_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) select * from range_list partition for ('201902'); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) select * from range_list subpartition for ('201902','1'); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) --指定分区更新数据 update range_list partition (p_201901) set user_no = '2'; select * from range_list; select *from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 2 | 1 201902 | 1 | 2 | 1 201902 | 1 | 2 | 1 201902 | 1 | 2 | 1 (4 rows) update range_list subpartition (p_201901_a) set user_no = '3'; select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 3 | 1 201902 | 1 | 3 | 1 201902 | 1 | 3 | 1 201902 | 1 | 3 | 1 (4 rows) update range_list partition for ('201902') set user_no = '4'; select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 4 | 1 201902 | 1 | 4 | 1 201902 | 1 | 4 | 1 201902 | 1 | 4 | 1 (4 rows) update range_list subpartition for ('201902','2') set user_no = '5'; gaussdb=# select *from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 4 | 1 201902 | 1 | 4 | 1 201902 | 1 | 4 | 1 201902 | 1 | 4 | 1 (4 rows) select * from range_list; --指定分区删除数据 delete from range_list partition (p_201901); DELETE 4 delete from range_list partition for ('201903'); DELETE 0 delete from range_list subpartition (p_201901_a); DELETE 0 delete from range_list subpartition for ('201903','2'); DELETE 0 --参数sql_compatibility='B'时,可指定多分区删除数据 delete from range_list as t partition (p_201901_a, p_201901); DELETE 0 --指定分区insert数据 insert into range_list partition (p_201901) values('201902', '1', '1', 1) ON DUPLICATE KEY UPDATE sales_amt = 5; insert into range_list subpartition (p_201901_a) values('201902', '1', '1', 1) ON DUPLICATE KEY UPDATE sales_amt = 10; insert into range_list partition for ('201902') values('201902', '1', '1', 1) ON DUPLICATE KEY UPDATE sales_amt = 30; insert into range_list subpartition for ('201902','1') values('201902', '1', '1', 1) ON DUPLICATE KEY UPDATE sales_amt = 40; select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) --指定分区merge into数据 CREATE TABLE newrange_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY RANGE (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 VALUES LESS THAN( '201903' ) ( SUBPARTITION p_201901_a values ('1'), SUBPARTITION p_201901_b values ('2') ), PARTITION p_201902 VALUES LESS THAN( '201910' ) ( SUBPARTITION p_201902_a values ('1'), SUBPARTITION p_201902_b values ('2') ) ); insert into newrange_list values('201902', '1', '1', 1); insert into newrange_list values('201903', '1', '1', 2); MERGE INTO range_list partition (p_201901) p USING newrange_list partition (p_201901) np ON p.month_code= np.month_code WHEN MATCHED THEN UPDATE SET dept_code = np.dept_code, user_no = np.user_no, sales_amt = np.sales_amt WHEN NOT MATCHED THEN INSERT VALUES (np.month_code, np.dept_code, np.user_no, np.sales_amt); select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) MERGE INTO range_list partition for ('201901') p USING newrange_list partition for ('201901') np ON p.month_code= np.month_code WHEN MATCHED THEN UPDATE SET dept_code = np.dept_code, user_no = np.user_no, sales_amt = np.sales_amt WHEN NOT MATCHED THEN INSERT VALUES (np.month_code, np.dept_code, np.user_no, np.sales_amt); select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) MERGE INTO range_list subpartition (p_201901_a) p USING newrange_list subpartition (p_201901_a) np ON p.month_code= np.month_code WHEN MATCHED THEN UPDATE SET dept_code = np.dept_code, user_no = np.user_no, sales_amt = np.sales_amt WHEN NOT MATCHED THEN INSERT VALUES (np.month_code, np.dept_code, np.user_no, np.sales_amt); select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) MERGE INTO range_list subpartition for ('201901', '1') p USING newrange_list subpartition for ('201901', '1') np ON p.month_code= np.month_code WHEN MATCHED THEN UPDATE SET dept_code = np.dept_code, user_no = np.user_no, sales_amt = np.sales_amt WHEN NOT MATCHED THEN INSERT VALUES (np.month_code, np.dept_code, np.user_no, np.sales_amt); select * from range_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (4 rows) 示例3对二级分区表进行truncate操作 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 CREATE TABLE list_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY LIST (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 VALUES ( '201902' ) ( SUBPARTITION p_201901_a VALUES ( '1' ), SUBPARTITION p_201901_b VALUES ( default ) ), PARTITION p_201902 VALUES ( '201903' ) ( SUBPARTITION p_201902_a VALUES ( '1' ), SUBPARTITION p_201902_b VALUES ( '2' ) ) ); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201902', '2', '1', 1); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); insert into list_list values('201903', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); select * from list_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (6 rows) select * from list_list partition (p_201901); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (3 rows) alter table list_list truncate partition p_201901; select * from list_list partition (p_201901); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list partition (p_201902); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 (3 rows) alter table list_list truncate partition p_201902; select * from list_list partition (p_201902); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) insert into list_list values('201902', '1', '1', 1); insert into list_list values('201902', '2', '1', 1); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); insert into list_list values('201903', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); select * from list_list subpartition (p_201901_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (2 rows) alter table list_list truncate subpartition p_201901_a; select * from list_list subpartition (p_201901_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list subpartition (p_201901_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 (1 row) alter table list_list truncate subpartition p_201901_b; select * from list_list subpartition (p_201901_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list subpartition (p_201902_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 1 | 1 | 1 (1 row) alter table list_list truncate subpartition p_201902_a; select * from list_list subpartition (p_201902_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list subpartition (p_201902_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 (2 rows) alter table list_list truncate subpartition p_201902_b; select * from list_list subpartition (p_201902_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) drop table list_list; 示例4:对二级分区表进行split操作 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 CREATE TABLE list_list ( month_code VARCHAR2 ( 30 ) NOT NULL , dept_code VARCHAR2 ( 30 ) NOT NULL , user_no VARCHAR2 ( 30 ) NOT NULL , sales_amt int ) PARTITION BY LIST (month_code) SUBPARTITION BY LIST (dept_code) ( PARTITION p_201901 VALUES ( '201902' ) ( SUBPARTITION p_201901_a VALUES ( '1' ), SUBPARTITION p_201901_b VALUES ( default ) ), PARTITION p_201902 VALUES ( '201903' ) ( SUBPARTITION p_201902_a VALUES ( '1' ), SUBPARTITION p_201902_b VALUES ( default ) ) ); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201902', '2', '1', 1); insert into list_list values('201902', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); insert into list_list values('201903', '1', '1', 1); insert into list_list values('201903', '2', '1', 1); select * from list_list; month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 201903 | 1 | 1 | 1 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (6 rows) select * from list_list subpartition (p_201901_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (2 rows) select * from list_list subpartition (p_201901_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 (1 row) alter table list_list split subpartition p_201901_b values (2) into ( subpartition p_201901_b, subpartition p_201901_c ); select * from list_list subpartition (p_201901_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (2 rows) select * from list_list subpartition (p_201901_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 (1 row) select * from list_list subpartition (p_201901_c); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list partition (p_201901); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201902 | 2 | 1 | 1 201902 | 1 | 1 | 1 201902 | 1 | 1 | 1 (3 rows) select * from list_list subpartition (p_201902_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 1 | 1 | 1 (1 row) select * from list_list subpartition (p_201902_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 (2 rows) alter table list_list split subpartition p_201902_b values (3) into ( subpartition p_201902_b, subpartition p_201902_c ); select * from list_list subpartition (p_201902_a); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 1 | 1 | 1 (1 row) select * from list_list subpartition (p_201902_b); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- (0 rows) select * from list_list subpartition (p_201902_c); month_code | dept_code | user_no | sales_amt ------------+-----------+---------+----------- 201903 | 2 | 1 | 1 201903 | 2 | 1 | 1 (2 rows) drop table list_list;
  • 参数说明 IF NOT EXISTS 如果已经存在相同名称的表,不会抛出一个错误,而会发出一个通知,告知表关系已存在。 subpartition_table_name 二级分区表的名称。 取值范围:字符串,要符合标识符命名规范。 column_name 新表中要创建的字段名。 取值范围:字符串,要符合标识符命名规范。 data_type 字段的数据类型。 COLLATE collation COLLATE子句指定列的排序规则(该列必须是可排列的数据类型)。如果没有指定,则使用默认的排序规则。排序规则可以使用“select * from pg_collation;”命令从pg_collation系统表中查询,默认的排序规则为查询结果中以default开始的行。 CONSTRAINT constraint_name 列约束或表约束的名称。可选的约束子句用于声明约束,新行或者更新的行必须满足这些约束才能成功插入或更新。 定义约束有两种方法: 列约束:作为一个列定义的一部分,仅影响该列。 表约束:不和某个列绑在一起,可以作用于多个列。 在B模式数据库下(即sql_compatibility = 'B')constraint_name为可选项,在其他模式数据库下,必须加上constraint_name。 index_name 索引名。 index_name仅在B模式数据库下(即sql_compatibility = 'B')支持,其他模式数据库下不支持。 对于外键约束,constraint_name和index_name同时指定时,索引名为constraint_name。 对于唯一键约束,constraint_name和index_name同时指定时,索引名以index_name。 USING method 指定创建索引的方法。 取值范围参考参数说明中的USING method。 USING method仅在B模式数据库下(即sql_compatibility = 'B')支持,其他模式数据库下不支持。 在B模式下,未指定USING method时,对于ASTORE的存储方式,默认索引方法为btree;对于USTORE的存储方式,默认索引方法为ubtree。 ASC | DESC ASC表示指定按升序排序(默认)。DESC指定按降序排序。 ASC|DESC只在B模式数据库下(即sql_compatibility = 'B')支持,其他模式数据库不支持。 LIKE source_table [ like_option ... ] LIKE子句声明一个表,新表自动从这个表里面继承所有字段名及其数据类型和非空约束。和INHERITS不同,新表与原来的表之间在创建动作完毕之后是完全无关的。在源表做的任何修改都不会传播到新表中,并且也不可能在扫描源表的时候包含新表的数据。 字段缺省表达式只有在声明了INCLUDING DEFAULTS之后才会包含进来。缺省是不包含缺省表达式的,即新表中所有字段的缺省值都是NULL。 如果指定了INCLUDING GENERATED,则源表列的生成表达式会复制到新表中。默认不复制生成表达式。 非空约束将总是复制到新表中,CHECK约束则仅在指定了INCLUDING CONSTRAINTS的时候才复制,而其他类型的约束则永远也不会被复制。此规则同时适用于表约束和列约束。 和INHERITS不同,被复制的列和约束并不使用相同的名称进行融合。如果明确的指定了相同的名称或者在另外一个LIKE子句中,将会报错。 如果指定了INCLUDING INDEXES,则源表上的索引也将在新表上创建,默认不建立索引。 如果指定了INCLUDING STORAGE,则源表列的STORAGE设置也将被拷贝,默认情况下不包含STORAGE设置。 如果指定了INCLUDING COMMENTS,则源表列、约束和索引的注释也会被拷贝过来。默认情况下,不拷贝源表的注释。 如果指定了INCLUDING RELOPTIONS,则源表的存储参数(即源表的WITH子句)也将拷贝至新表。默认情况下,不拷贝源表的存储参数。 INCLUDING ALL包含了INCLUDING DEFAULTS、INCLUDING CONSTRAINTS、INCLUDING INDEXES、INCLUDING STORAGE、INCLUDING COMMENTS、INCLUDING PARTITION和INCLUDING RELOPTIONS的内容。 AUTO_INCREMENT [ = ] value 这个子句为自动增长列指定一个初始值,value必须为正整数,不得超过2127-1。 该子句仅在参数sql_compatibility='B'时有效。 WITH ( storage_parameter [= value] [, ... ] ) 这个子句为表或索引指定一个可选的存储参数。参数的详细描述如下所示: FILLFACTOR 一个表的填充因子(fillfactor)是一个介于10和100之间的百分数。在Ustore存储引擎下,该值得默认值为92,在Astore存储引擎下默认值为100(完全填充)。如果指定了较小的填充因子,INSERT操作仅按照填充因子指定的百分率填充表页。每个页上的剩余空间将用于在该页上更新行,这就使得UPDATE有机会在同一页上放置同一条记录的新版本,这比把新版本放置在其他页上更有效。对于一个从不更新的表将填充因子设为100是最佳选择,但是对于频繁更新的表,选择较小的填充因子则更加合适。该参数对于列存表没有意义。 取值范围:10~100 ORIENTATION 决定了表的数据的存储方式。 取值范围: COLUMN:表的数据将以列式存储。 ROW(缺省值):表的数据将以行式存储。 orientation不支持修改。 STORAGE_TYPE 指定存储引擎类型,该参数设置成功后就不再支持修改。 取值范围: USTORE,表示表支持Inplace-Update存储引擎。特别需要注意,使用USTORE表,必须要开启track_counts和track_activities参数,否则会引起空间膨胀。 ASTORE,表示表支持Append-Only存储引擎。 默认值: 不指定表时,默认是Inplace-Update存储。 COMPRESSION 列存表的有效值为LOW/MIDDLE/HIGH/YES/NO,压缩级别依次升高,默认值为LOW。 行存表不支持压缩。 MAX_BATCHROW 指定了在数据加载过程中一个存储单元可以容纳记录的最大数目。该参数只对列存表有效。 取值范围:10000~60000,默认60000。 PARTIAL_CLUSTER_ROWS 指定了在数据加载过程中进行将局部聚簇存储的记录数目。该参数只对列存表有效。 取值范围:大于等于MAX_BATCHROW,建议取值为MAX_BATCHROW的整数倍数。 DELTAROW_THRESHOLD 预留参数。该参数只对列存表有效。 取值范围:0~9999 segment 使用段页式的方式存储。本参数仅支持行存表。不支持列存表、临时表、unlog表。不支持ustore存储引擎。 取值范围:on/off 默认值:off COMPRESS / NOCOMPRESS 创建一个新表时,需要在创建表语句中指定关键字COMPRESS,这样,当对该表进行批量插入时就会触发压缩特性。该特性会在页范围内扫描所有元组数据,生成字典、压缩元组数据并进行存储。指定关键字NOCOMPRESS则不对表进行压缩。行存表不支持压缩。 缺省值为NOCOMPRESS,即不对元组数据进行压缩。 TABLESPACE tablespace_name 指定新表将要在tablespace_name表空间内创建。如果没有声明,将使用默认表空间。 PARTITION BY {RANGE [COLUMNS] | LIST [COLUMNS] | HASH | KEY} (partition_key) 对于partition_key,分区策略的分区键仅支持1列。 分区键支持的数据类型和一级分区表约束保持一致。 COLUMNS关键字只能在sql_compatibility='B'时使用,只能加在RANGE或LIST之后,“RANGE COLUMNS” 语义同 “RANGE”,“LIST COLUMNS” 语义同 “LIST”。 KEY关键字只能在sql_compatibility='B'时使用,KEY与HASH同义。 SUBPARTITION BY {RANGE | LIST | HASH | KEY} (subpartition_key) 对于subpartition_key,分区策略的分区键仅支持1列。 分区键支持的数据类型和一级分区表约束保持一致。 KEY关键字只能在sql_compatibility='B'时使用,KEY与HASH同义。 PARTITIONS integer 指定分区个数。 integer为分区数,必须为大于0的整数,且不得大于1048575。 当在RANGE和LIST分区后指定此子句时,必须显式定义每个分区,且定义分区的数量必须与integer值相等。只能在sql_compatibility='B'时在RANGE和LIST分区后指定此子句。 当在HASH和KEY分区后指定此子句时,若不列出各个分区定义,将自动生成integer个分区,自动生成的分区名为“p+数字”,数字依次为0到integer-1,分区的表空间默认为此表的表空间;也可以显式列出每个分区定义,此时定义分区的数量必须与integer值相等。若既不列出分区定义,也不指定分区数量,将创建唯一一个分区。 SUBPARTITIONS integer 指定二级分区数量。 integer为二级分区个数,必须为大于0的整数,且不得大于1048575。 只能在HASH和KEY二级分区后指定此子句。 若不列出各个二级分区定义,将在每个一级分区内自动生成integer个二级分区,自动生成的二级分区名为“一级分区名+sp+数字”,数字依次为0到integer-1,分区的表空间默认为此表的表空间。 也可以列出每个二级分区定义,此时二级分区的数量必须与integer值相等。 若既不列出每个二级分区定义,也不指定二级分区数量,将创建唯一一个二级分区。 { ENABLE | DISABLE } ROW MOVEMENT 行迁移开关。 如果进行UPDATE操作时,更新了元组在分区键上的值,造成了该元组所在分区发生变化,就会根据该开关给出报错信息,或者进行元组在分区间的转移。 取值范围: ENABLE(缺省值):行迁移开关打开。 DISABLE:行迁移开关关闭。 在打开行迁移开关情况下,并发update、delete操作可能会报错,原因如下: update和delete操作对于旧数据都是标记为已删除。在打开行迁移开关情况下,如果更新分区键时,导致了跨分区更新,内核会把旧分区中旧数据标记为已删除,在新分区中新增加一条数据,无法通过旧数据找到新数据。 在以下三个并发场景下,update和update并发、delete和delete并发和update和delete并发,如果并发操作同一行数据时,数据跨分区和非跨分区结果有不同的行为。 对于数据非跨分区结果,第一个操作执行完后,第二个操作不会报错。 如果第一个操作是update,第二个操作能成功找到最新的数据,之后对新数据操作。 如果第一个操作是delete,第二个操作看到当前数据已经被删除而且找不到最新数据,就终止操作。 对于数据跨分区结果,第一个操作执行完后,第二个操作会报错。 如果第一个操作是update,由于新数据在新分区中,第二个操作不能成功找到最新的数据,就无法操作,之后会报错。 如果第一个操作是delete,第二个操作看到当前数据已经被删除而且找不到最新数据,但无法判断删除旧数据的操作是update还是delete。如果是update,报错处理。如果是delete,终止操作。为了保持数据的正确性,只能报错处理。 如果是update和update并发,update和delete并发场景,需要串行执行才能解决问题,如果是delete和delete并发,关闭行迁移开关可以解决问题。 NOT NULL 字段值不允许为NULL。ENABLE用于语法兼容,可省略。 NULL 字段值允许NULL ,这是缺省。 这个子句只是为和非标准SQL数据库兼容。不建议使用。 CHECK (condition) [ NO INHERIT ] CHECK约束声明一个布尔表达式,每次要插入的新行或者要更新的行的新值必须使表达式结果为真或未知才能成功,否则会抛出一个异常并且不会修改数据库。 声明为字段约束的检查约束应该只引用该字段的数值,而在表约束里出现的表达式可以引用多个字段。 用NO INHERIT标记的约束将不会传递到子表中去。 ENABLE用于语法兼容,可省略。 DEFAULT default_expr DEFAULT子句给字段指定缺省值。该数值可以是任何不含变量的表达式(不允许使用子查询和对本表中的其他字段的交叉引用)。缺省表达式的数据类型必须和字段类型匹配。 缺省表达式将被用于任何未声明该字段数值的插入操作。如果没有指定缺省值则缺省值为NULL 。 GENERATED ALWAYS AS ( generation_expr ) [STORED] 该子句将字段创建为生成列,生成列的值在写入(插入或更新)数据时由generation_expr计算得到,STORED表示像普通列一样存储生成列的值。 STORED关键字可省略,与不省略STORED语义相同。 生成表达式不能以任何方式引用当前行以外的其他数据。生成表达式不能引用其他生成列,不能引用系统列。生成表达式不能返回结果集,不能使用子查询,不能使用聚集函数,不能使用窗口函数。生成表达式调用的函数只能是不可变(IMMUTABLE)函数。 不能为生成列指定默认值。 生成列不能作为分区键的一部分。 生成列不能和ON UPDATE约束字句的CASCADE,SET NULL,SET DEFAULT动作同时指定。生成列不能和ON DELETE约束字句的SET NULL,SET DEFAULT动作同时指定。 修改和删除生成列的方法和普通列相同。删除生成列依赖的普通列,生成列被自动删除。不能改变生成列所依赖的列的类型。 生成列不能被直接写入。在INSERT或UPDATE命令中,不能为生成列指定值,但是可以指定关键字DEFAULT。 生成列的权限控制和普通列一样。 列存表不支持生成列。 AUTO_INCREMENT 指定列为自动增长列。 详见:•AUTO_INCREMENT。 UNIQUE [KEY] index_parameters UNIQUE ( column_name [, ... ] ) index_parameters UNIQUE约束表示表里的一个字段或多个字段的组合必须在全表范围内唯一。 对于唯一约束,NULL被认为是互不相等的。 UNIQUE KEY只能在sql_compatibility='B'时使用,与UNIQUE语义相同。 PRIMARY KEY index_parameters PRIMARY KEY ( column_name [, ... ] ) index_parameters 主键约束声明表中的一个或者多个字段只能包含唯一的非NULL值。 一个表只能声明一个主键。 DEFERRABLE | NOT DEFERRABLE 这两个关键字设置该约束是否可推迟。一个不可推迟的约束将在每条命令之后马上检查。可推迟约束可以推迟到事务结尾使用SET CONSTRAINTS命令检查。缺省是NOT DEFERRABLE。目前,UNIQUE约束、主键约束、外键约束可以接受这个子句。所有其他约束类型都是不可推迟的。 INITIALLY IMMEDIATE | INITIALLY DEFERRED 如果约束是可推迟的,则这个子句声明检查约束的缺省时间。 如果约束是INITIALLY IMMEDIATE(缺省),则在每条语句执行之后就立即检查它; 如果约束是INITIALLY DEFERRED ,则只有在事务结尾才检查它。 约束检查的时间可以用SET CONSTRAINTS命令修改。 USING INDEX TABLESPACE tablespace_name 为UNIQUE或PRIMARY KEY约束相关的索引声明一个表空间。如果没有提供这个子句,这个索引将在default_tablespace中创建,如果default_tablespace为空,将使用数据库的缺省表空间。
  • 注意事项 二级分区表有两个分区键,每个分区键只能支持1列。 唯一约束和主键约束的约束键包含所有分区键将为约束创建LOCAL索引,否则创建GLOBAL索引。如果指定创建local唯一索引,必须包含所有分区键。 创建二级分区表时,如果在其一级分区下不显示指定二级分区,会自动创建一个同范围的二级分区。 二级分区表的二级分区(叶子节点)个数不能超过1048575个,一级分区无限制,但一级分区下面至少有一个二级分区。 二级分区表的总分区数(包括一级分区和二级分区)最大值为1048575个,一般情况下业务不可能创建这么多分区,这样会导致内存不足。应参照参数local_syscache_threshold的值合理创建分区,二级分区表使用内存大致为(总分区数 * 3 / 1024)MB。理论上分区占用内存不允许大于local_syscache_threshold的值,同时还需要预留部分空间以供其他功能使用。 当分区数太多导致内存不足时,会间接导致性能急剧下降。 二级分区表只支持行存,不支持列存,hashbucket。 不支持cluster。 指定分区查询时,如select * from tablename partition/subpartition (partitionname),关键字partition和subpartition注意不要写错。如果写错,查询不会报错,这时查询会变为对表起别名进行查询。 不支持密态数据库、账本数据库(当前特性是实验室特性,使用时请联系华为技术工程师提供技术支持。)和行级访问控制。 对于二级分区表PARTITION/SUBPARTITION FOR (values)语法,values只能是常量。 对于二级分区表PARTITION/SUBPARTITION FOR (values)语法,values在需要数据类型转换时,建议使用强制类型转换,以防隐式类型转换结果与预期不符。 指定分区语句目前不能走全局索引扫描。
共100000条